YOLO模型发展中各版本的重大改进

到今天(2024年12月25日)YOLO模型的发展过程
在这里插入图片描述
我找到一篇论文,大家可以去看一下,YOLOv11 An Overview of the Key Architectural Enhancements
还有一篇Evaluating the Evolution of YOLO (You Only Look Once) Models: A Comprehensive Benchmark Study
of YOLO11 and Its Predecessors

YOLO 系列版本改进总览

YOLOv1 (2015)

  • 首次提出 one-stage 检测架构:直接在图像上预测边界框和类别,无需先生成候选区域。
  • 将图像分为 S×S 网格进行预测:每个网格负责预测包含目标的边界框和类别。
  • 速度快但准确率较低:由于简化了流程,速度很快,但定位和分类精度相对较低。
  • 总结: YOLO 系列的开山之作,奠定了 one-stage 检测的基础,注重速度,但精度有待提高。

YOLOv2 (2016)

  • 引入 anchor boxes:预先定义一组不同尺寸和比例的框,帮助模型更好地预测目标。
  • 添加 batch normalization:加速训练,提高模型稳定性。
  • 使用 k-means 聚类生成 anchor 尺寸:自动确定最佳 anchor 尺寸,更适应数据集。
  • 引入多尺度训练:在不同分辨率的图像上训练,提高模型对不同大小目标的适应性。
  • 总结: 引入 anchor boxes 和多尺度训练,精度得到显著提升,训练更加稳定。

YOLOv3 (2018)

  • 使用 Darknet-53 骨干网络:一个更深层次的卷积神经网络,能够提取更丰富的特征。
  • 多尺度特征图预测 (FPN 结构):融合不同层级的特征,更好地检测不同大小的目标。
  • 引入残差连接:缓解深层网络训练中的梯度消失问题。
  • 每个类别独立的逻辑回归:每个类别使用独立的回归器,提高分类精度。
  • 总结: 引入多尺度特征和残差连接,进一步提升了精度,使其更加适应不同大小的目标。

YOLOv4 (2020)

  • 引入 CSPDarknet53 骨干网络:进一步提升了骨干网络的特征提取能力,并减少计算量。
  • 数据增强: Mosaic、CutMix:更复杂的增强方法,增加训练数据的多样性,提高模型鲁棒性。
  • 引入 ASFF、SAM 注意力机制:增强模型对重要特征的关注,提高检测精度。
  • 添加 BoF 和 BoS 策略:使用更好的技巧提高模型性能。
  • 总结: 使用了更强大的骨干网络,结合更有效的数据增强和注意力机制,性能大幅提升。

YOLOv5 (2020)

  • 改进 CSP 结构:进一步优化 CSP 网络结构,使其效率更高。
  • Focus 层替代原有 stem 层:更高效地提取初始特征。
  • 自适应 anchor boxes 计算:自动适应数据集的 anchor 尺寸。
  • 自适应图像缩放:根据数据集动态调整图像缩放比例,提高模型适应性。
  • 总结: 在 YOLOv4 的基础上,更加注重工程实现和部署,简化了设计并提高灵活性。

YOLOv6 (2022)

  • RepVGG 风格设计:使用重参数化技术,加速模型训练和推理。
  • 去 anchor 设计:减少了超参数调整,简化了模型设计。
  • TAL 分配策略:更加智能的标签分配,更好地匹配目标和预测。
  • 引入 SimOTA 标签分配:一种动态标签分配策略,提升训练效果。
  • 总结: 采用 RepVGG 风格设计,提升模型训练和推理效率,并探索了无 anchor 的检测方式。

YOLOX (2021)

  • 解耦头部设计:分别进行分类和回归预测,提高预测精度。
  • 去 anchor 设计:简化模型,减少超参数。
  • SimOTA 标签分配:动态匹配目标和预测,提升训练效果。
  • 引入 strong augmentation:使用更强的数据增强,提高模型鲁棒性。
  • 总结: 进一步简化模型,采用解耦头和 SimOTA,并注重数据增强,提升了性能和训练效率。

YOLOv7 (2022)

  • E-ELAN 扩展网络结构:进一步提升网络特征提取能力。
  • 辅助头设计:帮助模型更好地学习目标特征。
  • 重新参数化模块:提升模型训练速度和性能。
  • 动态标签分配策略:更灵活的标签分配策略,提高模型学习效率。
  • 总结: 通过更复杂的网络结构和重新参数化模块,进一步提升精度,并探索了动态标签分配。

YOLOv8 (2023)

  • 改进骨干网络:使用更高效的骨干网络进行特征提取。
  • 优化头部设计:提升预测性能和训练效率。
  • C2f 模块替换 C3:一种更高效的网络模块,提升模型性能。
  • 统一的头部结构:简化模型设计,使其更易于使用和部署。
  • 总结: 优化了整体结构,使用了更高效的模块,并统一了头部设计,使其更易用。

PPYOLOE (2022)

  • 改进 CSP 骨干网络:使用更高效的 CSP 网络结构进行特征提取。
  • Task Alignment Learning:一种学习目标和预测对齐的方法,提高检测精度。
  • Varifocal Loss:一种更有效的损失函数,提升模型学习效率。
  • 去 anchor 设计:简化了模型设计。
  • 总结: 采用了更高效的骨干网络,优化了损失函数,进一步提升精度。

PPYOLOE+ (2022)

  • ET-Head 设计:一种新的头部设计,提高预测性能。
  • TAL 改进版本:进一步提升标签分配策略的效率。
  • 更高效的骨干网络:提升特征提取效率。
  • 改进的数据增强策略:提升模型鲁棒性和泛化能力。
  • 总结: 进一步改进了头部设计和标签分配,优化了数据增强策略,性能进一步提升。

YOLOv9 (2024)

  • 可编程梯度信息 (PGI):控制梯度信息在网络中的流动,避免信息丢失。
  • 广义高效层聚合网络 (GELAN):一种高效的网络结构,在保持性能的同时减少计算量。
  • 轻量化设计:注重模型大小和效率,使其更适合移动设备和嵌入式系统。
  • 动态模块:根据输入数据调整网络结构,提高适应性。
  • 总结: 引入 PGI 技术来有效控制梯度信息,采用了更高效的 GELAN 骨干网络,更注重轻量化。

YOLOv10 (2024)

  • NMS Free:摒弃传统的非极大值抑制后处理步骤,提高推理速度。
  • 端到端训练:使模型学习数据中的特征,减少人为干预。
  • 新型注意力机制:在网络中更高效地捕获目标信息,提升模型精度。
  • 更高效的骨干网络:在保证性能的同时,计算效率更高。
  • 动态匹配策略:根据目标特征灵活匹配标签,提高学习效率。
  • 总结: 摒弃 NMS 后处理,采用了新型注意力机制和动态匹配策略,注重模型的端到端训练和推理效率。

YOLOv11
根据最新的资料,YOLOv11 引入了多项改进,以提升模型的性能和效率。以下是主要的改进点:

  1. C3K2 块:在网络架构中增加了 C3K2 块,旨在增强特征提取能力,提高模型的表达性能。

  2. SPFF 模块:引入了 SPFF(Spatial Pyramid Feature Fusion)模块,用于多尺度特征融合,提升对不同大小目标的检测能力。

  3. C2PSA 块:增加了 C2PSA(Channel-wise and Point-wise Spatial Attention)块,旨在提高模型对重要特征的关注度,提升检测精度。

  4. LSKA 模块:引入了大核分离卷积注意力模块(LSKA),通过将 2D 卷积核分解为水平和垂直的 1D 卷积核,降低计算复杂度的同时,提高模型对对象形状的学习能力。

  5. SE 注意力机制:集成了 SE(Squeeze-and-Excitation)模块,提升网络的表达能力,使其能够更好地区分有用和无用的特征,从而提高分类精度。

  6. MHSA 模块:采用多头自注意力机制(MHSA),增强模型对全局信息的捕获能力,提高对复杂场景的适应性。

  7. Re-CalibrationFPN:为了加强浅层和深层特征的交互能力,推出了重校准特征金字塔网络(Re-CalibrationFPN),通过自适应的注意力机制,提升多尺度特征融合效果。

  8. 轻量化设计:通过优化网络结构,减少模型参数量,使其在边缘设备上运行更加高效。

  9. 端到端优化:进一步实现端到端的训练和推理,减少手动设计的中间步骤,提高模型的自动化程度。

这些改进使得 YOLOv11 在保持高速检测的同时,进一步提升了精度和适应性,满足了更广泛的应用需求。

此外,您可能对以下视频感兴趣,它深入剖析了 YOLOv11 的原理和训练方法:

主要改进方向总结

1. 网络结构优化

  • 骨干网络、颈部网络、头部网络持续优化,引入动态模块,提升特征提取和融合能力。
  • 总结: 不断寻求更高效、更强大的网络结构,以提高模型性能。

2. 标签分配策略

  • 从静态到动态,使标签分配更灵活,适应不同大小和复杂性的目标。
  • 总结: 更加智能化的标签分配,提高模型训练效率和精度。

3. 损失函数设计

  • 引入更适合目标检测任务的损失函数,提高模型学习效率。
  • 总结: 更加合理的损失函数设计,帮助模型更好地学习目标特征。

4. 数据增强方法

  • 从简单的变换到更复杂的增强方法,提高模型鲁棒性。
  • 总结: 更强大的数据增强方法,提升模型的泛化能力。

5. 推理速度优化

  • 从 NMS 到 NMS Free,以及模型压缩、量化等技术,提升推理速度。
  • 总结: 更加注重模型的推理效率,使其更适合实际应用。

6. 梯度信息控制

  • 通过 PGI 等技术控制梯度信息,避免信息损失,提高模型泛化能力。
  • 总结: 更加精细的梯度控制,提升模型的学习能力。

7. 注意力机制

  • 引入 ASFF、SAM 等注意力机制,更高效地捕获目标信息。
  • 总结: 引入注意力机制,帮助模型更好地关注重要特征。

8. 自监督学习和多模态

  • 探索自监督学习,利用未标注数据提高模型泛化能力。
  • 探索多模态数据融合,提升模型鲁棒性。
  • 总结: 未来的探索方向,致力于利用更多数据和信息,进一步提升模型性能。

总结

YOLO 系列的演进是不断寻求速度、精度和效率平衡的过程。每一次改进都致力于优化网络结构、标签分配、损失函数、数据增强、推理效率以及探索新的学习方法。 YOLO 系列的持续发展推动着目标检测领域的进步,不断满足着不同场景下对高性能目标检测的需求。

希望这个版本在各项改进后都加上了简单的解释,更方便理解!

### Re-Calibration FPN 网络结构 Re-Calibration Feature Pyramid Network (Re-Calibration FPN) 是一种改进型特征金字塔网络,旨在通过重新校准机制增强多尺度特征表示的能力。这种架构不仅继承了传统FPN的优点,还在不同层次间加入了自适应调整模块来改善信息流传递效率。 具体来说,在每一级特征图上应用通道注意力机制和空间注意力机制相结合的方式来进行全局上下文建模[^1]。这使得模型能够更有效地捕捉到目标物体的关键属性,并减少背景噪声干扰的影响。 对于基于 ultralytics/cfg/models/rt-detr/rtdetr-ASF.yaml 的项目而言,引入 P2 检测层以及采用 C3k2-REPVGGOREPA 替代原有组件之后,可以进一步提升整体性能表现并降低计算复杂度[^2]。 #### 实现方法概述 为了实现 Re-Calibration FPN 结构,以下是几个关键点: - **构建基础骨干网**:选择合适的卷积神经网络作为提取图像特征的基础框架; - **添加侧边连接**:类似于标准 FPN 设计,在各个阶段之间建立横向跳跃路径; - **融合多尺度特征**:利用 top-down 和 bottom-up 路径完成跨级别特征交互; - **加入重校准单元**:在每个融合后的特征映射处嵌入 SENet 或 CBAM 类似的功能块用于动态调节权重分配; ```python import torch.nn as nn class Recalibrate(nn.Module): def __init__(self, channels, reduction=16): super(Recalibrate, self).__init__() # Channel attention module self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channels, channels // reduction), nn.ReLU(inplace=True), nn.Linear(channels // reduction, channels), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x) def build_recalibrated_fpn(): layers = [] # 假设已经定义好了 backbone 函数返回预训练好的 CNN 骨干网络实例 base_model = backbone() for i in range(len(base_model.feature_maps)): recalibrator = Recalibrate(base_model.feature_maps[i].out_channels) layer = nn.Sequential( base_model.feature_maps[i], recalibrator, ... ) layers.append(layer) return nn.ModuleList(layers) ``` 上述代码片段展示了如何创建一个简单的 Re-Calibration 单元类 `Recalibrate` 及其集成方式。实际部署时还需要考虑更多细节如批量归一化、激活函数的选择等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值