单细胞测序数据整合中的批次效应

在数据分析的时候,我们的目标是找到样本之间真实的生物学差异。但是这种真实的生物学因素往往会受到各种因素影响,举几个场景

  • 不同样本
  • 同一样本的生物学重复
  • 同一样本的技术重复
  • 同一样本在同一个实验室由同一团队在不同时间点处理
  • 同一细胞系/小鼠在不同实验室
  • 不同建库策略,10X平台,Drop-seq, SMART2-seq
  • 不同测序平台,BGI/Illumina
  • 不同分析流程(甚至一个工具的多个版本,如salmon,CellRanger)

这些因素之间有些是生物学真实的差异,有些是抽样时的随机波动。有些是系统性因素,比如说批次效应(batch effect)。

从直觉上讲,最好是分析的过程中过滤掉这种批次效应。但是即便是同一个人对同一个样本做的相同实验,也有可能因为时间差异导致批次效应,我们需要对这种数据集进行批次效应校正吗?我们对批次效应进行校正的同时也会引入新的问题,它很有可能将生物学本身的差异视为批次效应,然后将其去除。因此解决同一种实验的批次效应最好的方法就是搞一套比较好的实验设计(例如将样本分开在不同的实验批次中,(Kang et al., 2018))。但是受限于实验条件,基本上做不到这些,而且这类批次效应可能也没有那么大的影响。

我们更关注的一类批次效应,其实是不同实验室,不同建库手段,不同测序平台所引起的批次效应。当我们希望通过合并同一组织数据挖掘出更有意义的信息时,就不可避免的会发现,明明是同个组织的数据,表达量就是存在明显的差异(PCA, t-SNE降维可视化)。

之前有人用bulk RNA-seq的方法(limma, ComBat,RUVseq, svaseq)对单细胞数据进行校正,但是这些工具的基本假设都是"bulk RNA-seq数据中的细胞组成相似",可能适用于一些数据集,但是可推广性不强(Haghverdi et al., 2018)。于是就有一些专门用于单细胞转录组批次校正的工具,这里对这些软件做一个罗列

最后对于不同的实验设计,仅从主观上推荐的批次矫正方法

  • 技术重复: ComBat
  • 细胞系,生物学重复: ComBat
  • 同一个人的癌症和癌旁组织: 不校正/Harmony
  • 不同实验室的同一组织: Harmony
  • 同一个实验室做的不同人的样本: 不校正/Harmony

Harmony就是给soft k-mean(GMM)加了一个KL divergence,然后这个惩罚项最小化可以使得不同batch的cells尽可能分配到每个cluster内部,然后可以给每个cell分配一个到cluster的probability,那么每个cluster都会有一个和细胞数维度一样的细胞分配到这个cluster的probability,其实就是后续一个(batch number+1)维度的向量到embedding出来向量的一个回归方程的样本权(权重线性回归),简单而言它认为将不同batch的cell embedding的向量是由batch的variation和cell type的variation所决定,只要把cell type这部分找到(其实就是残差)找到就可以去除batch的影响。但是要定义样本在每个cluster里面的entropy,而且要使这个值尽可能大,所以我不知道这个文章有没有做rare celltype相关的一些测试
-@汪伟旭(复旦大学)

对于批次效应的检查,可以试试kBET,但是它的内存和运算时间和数据集大小密切相关,很有可能跑不下去。

批次效应

参考文献

  • Haghverdi, L., Lun, A.T.L., Morgan, M.D., and Marioni, J.C. (2018). Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol 36, 421–427.
  • Büttner, M., Miao, Z., Wolf, F.A., Teichmann, S.A., and Theis, F.J. (2019). A test metric for assessing single-cell RNA-seq batch correction. Nat Methods 16, 43–49.
  • Kang, H.M., Subramaniam, M., Targ, S., Nguyen, M., Maliskova, L., McCarthy, E., Wan, E., Wong, S., Byrnes, L., Lanata, C.M., et al. (2018). Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat Biotechnol 36, 89–94.
<think>好的,我需要回答用户关于混合效应模型在单细胞测序数据分析中的应用及实现方法的问题。首先,我得回忆一下混合效应模型的基本概念,以及它在单细胞数据中的适用场景。混合效应模型通常用于处理具有层次结构或重复测量的数据,能够同时考虑固定效应和随机效应。在单细胞测序中,细胞之间的异质性很高,可能存在来自不同个体、批次或实验条件的变异,这些都可以作为随机效应纳入模型。 接下来,我需要结合用户提供的参考文献,特别是引用[1]中提到泊松和负二项模型用于基因表达分析,这可能与混合效应模型的选择有关。用户还提到单细胞数据的特点,如高维度和稀疏性,这会影响模型的选择和计算效率。例如,引用[3]指出单细胞测序能揭示细胞异质性,而传统方法无法做到,所以混合效应模型可能帮助解析这种异质性。 然后,我需要考虑如何具体应用混合效应模型,例如在差异表达分析或跨样本分析中。例如,在差异表达分析中,固定效应可以是处理条件,而随机效应可能包括个体或批次效应。同时,实现方法可能涉及使用R或Python的包,比如lme4或glmmTMB,这些工具支持广义线性混合模型,适合处理计数数据,如单细胞RNA测序的UMI计数。 还需要注意单细胞数据的过度离散问题,引用[1]提到基因表达大多没有过度分散,但有些情况下可能需要用负二项分布。此外,计算挑战方面,单细胞数据量大,需要优化算法或采用近似方法,如引用[4]提到的Cell Ranger和Seurat等工具可能整合这些模型。 最后,生成相关问题时要围绕混合效应模型的应用、比较、优化、数据挑战等,确保问题有针对性,帮助用户深入理解。</think>### 混合效应模型在单细胞测序数据分析中的应用及实现方法 #### 1. **应用场景** 混合效应模型(Mixed Effects Models)在单细胞测序数据分析中主要用于解决以下问题: - **跨样本或批次效应校正**:单细胞数据常包含来自不同个体、实验批次或技术平台的变异,混合效应模型可将这些作为随机效应(Random Effects),保留生物学信号(固定效应,Fixed Effects)的同时减少噪声[^1][^3]。 - **差异表达分析**:在比较不同细胞类型或处理条件时,可引入个体或样本作为随机效应,避免因重复测量导致的假阳性结果。 - **细胞状态依赖性分析**:例如,基因表达的动态变化可能依赖于细胞状态(如T细胞激活状态),混合效应模型可捕捉此类状态依赖性调控[^1]。 #### 2. **模型选择与实现** 单细胞数据(如RNA测序)通常为高维稀疏计数数据,需选择适合的分布假设和计算工具: - **分布假设**: - **泊松或负二项模型**:适用于基因表达计数数据。若数据无过度离散(如引用[1]中所述),可选择泊松分布;若存在技术噪声或生物学异质性,则用负二项分布。 - **广义线性混合模型(GLMM)**:结合固定效应(如细胞类型、处理条件)和随机效应(如个体、批次),通过R包(如`lme4`、`glmmTMB`)或Python库(如`statsmodels`)实现[^4]。 - **计算优化**:针对单细胞数据量大的特点,可采用近似推断方法(如拟似然估计)或分块计算策略[^4]。 #### 3. **示例流程(以差异表达分析为例)** ```R # 使用 lme4 包构建混合效应模型 library(lme4) model <- glmer( gene_count ~ cell_type + treatment + (1 | patient_id), # 固定效应:细胞类型、处理;随机效应:患者 family = poisson(link = "log"), # 泊松分布(若无过度分散) data = scRNA_data ) summary(model) ``` #### 4. **挑战与注意事项** - **高维稀疏性**:单细胞数据中大量基因表达为零,需进行预筛选或引入零膨胀模型(Zero-Inflated Models)[^3]。 - **计算效率**:传统混合效应模型对大规模数据计算成本高,可结合单细胞分析工具(如`Seurat`或`SCANPY`)进行整合分析[^4]。 - **模型诊断**:需验证残差分布假设和随机效应结构,避免过拟合。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值