批次效应:概念初探

简介

批次效应(Batch effect)往往是是不同时间、不同操作者、不同试剂、不同仪器导致的实验误差,与研究中的生物或科学变量无关。批次效应对低维分子测量如 Western Blot 和 qPCR 影响较小,但对高通量测序数据的影响显著。其不利影响包括:可能扭曲生物学差异,在基因表达相关性分析如WGCNA中可能影响基因间的相关性等。批次效应的具体情形如:

  • 肿瘤样本都在周一测序,正常组织样本都在周二测序
  • 不同的测序子集由不同的技术人员负责
  • 测序时使用了两批不同的试剂、芯片或仪器
  • 数据挖掘时合并两个不同来源的数据集,如TCGA和GTEx的正常组织数据

归一化(Normalization)是一种数据分析技术,用于调整单个样本测量值的全局属性,以便能够更恰当地对所有样本进行比较。传统认为归一化可以去除批次效应,但由于批量效应违反了归一化方法的假设,使得归一并不能消除批量效应,甚至可能会加剧高通量测量中的技术伪影。

判断有无批次效应方法

1、查看样本总体分布

箱线图

小提琴图

密度曲线图

 

2、查看样本间的相关性

层次聚类树状图 

  •  若样本间按批次聚类,则说明有批次效应

PCA主成分分析

  •  若样本间按批次聚集,则说明有批次效应

去除批次效应的方法

  • 如果产生批次效应的批次已知,例如不同的数据集等,则使用 ComBat 函数去除批次效应
  • 如果产生批次效应的批次未只,使用 SVA 去除批次效应
  • SVA  直接从高通量数据估计批次效应的来源,从而纠正下游显着性分析,意味着不必提前知道重要的潜在批次变量

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郁柳_Fudan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值