点云深度学习的Pytorch框架

81 篇文章 586 订阅 ¥9.90 ¥99.00
本文介绍了一个基于Pytorch Geometric和Facebook Hydra的3D点云深度学习框架,用于点云分析,包括分割、分类和配准任务。框架支持ScanNet、S3DIS、ShapeNet等数据集,并实现了PointNet、PointNet++等著名模型。文章提供了开源代码链接、工程结构、依赖项以及安装教程,鼓励研究者进行点云分析研究。
摘要由CSDN通过智能技术生成

​这是3D 点云的深度学习框架,提供常见的点云分析方法的一种通用深度学习模型。它主要依赖Pytorch Geometric和Facebook Hydra。该框架能够以最小的代价和极大的可重复性来构建精简而复杂的模型。目标是建立一个工具,用于对SOTA模型进行基准测试,同时允许研究者们有效地研究点云分析,最终目标是建立可应用于实际应用的模型。
代码已经开源 https://github.com/nicolas-chaulet/torch-points3d(最近似乎又更新了)
在这里插入图片描述
工程结构
在这里插入图片描述

作为一种函数库,所以必然提供了一些常见的深度学习算法和接口,并且按任务划分模型和数据集。支持分割,分类和配准。
支持的数据集

在这里插入图片描述
分割的数据集:

  • Scannet from Angela Dai et a
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云PCL公众号博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值