平面的投影变换(2)——有几种几何变换?

1. 变换群(Group)



                                      (a) 相似性变换:圆仍然是圆,正方形仍然是正方形,直线的平行和垂直属性也被保持

                                      (b) 仿射变换:圆形变为椭圆,垂直线不再垂直,而平行线仍然平行

                                      (c) 投影变换:平行线不再平行,近大远小


上图可以看到不同层次的变换,这些变换构成一个变换群,按不同层次包括:

    - 通用线性群GL(n):可逆n×n实数矩阵

    - 投影线性群PL(n):GL(n)的商群

    - 仿射群(affine group):PL(3)的子群,其最后一行为(0,0,1)

    - 欧式群(Euclidean group):仿射群的子群,左上角的2×2子阵为正交阵。

    - 有向欧式群(oriented Euclidean group):欧式群的子群,左上角的2×2子阵的行列式为1。


有些变换不是群,如透视变换,因为两个透视变换的组合是一个投影变换,而不再是透视。

某些几何属性对于某些变换具有不变性。例如:两点可分离,对于欧式变换(平移+旋转)是不变的,而对于相似性变换(平移+旋转+等方性缩放)则不是不变的。距离是欧式不变的,但不是相似性不变的。角度则对欧式变换和相似性变换都是不变的。

2. 等距变换(isometry = iso(相等) + metric(度量))

等距变换在平面变换中保持欧式距离不变。它可以表示为

             或            

其中є=±1. 如果є=1,则保持方向不变,是一个欧式变换(平移+缩放)。如果є=-1,则为反向等距变换,代表欧式变换+反射(diag(-1,1,1))。欧式变换构成一个群,反向等距变换不构成群。

其中R是一个2×2选择矩阵,它是个正交阵,即RTR =RRT =I是一个平移2维向量。欧式变换也叫做位移(displacement),它有3个自由度(1个旋转,2个平移),因此可由两对匹配点确定。

等距变换具有对长度、角度和面积的不变性。

3. 相似性变换

相似性变换 = 等距变换 + 等方性缩放,用矩阵表示为:

           或            

其中因子 表示等方性缩放。

相似性变换保持形状不变。平面相似性变换具有4个自由度,比欧式变换多一个比例因子。

相似性变换对如下属性具有不变性:角度,平行,长度比例,面积比例。

4. 仿射变换(affinity)

仿射变换 = 非奇异线性变换 + 平移,用矩阵表示为:

                                 

平面仿射变换具有6个自由度,可由3对匹配点对确定。

其中非奇异矩阵A可通过SVD分解,得到:

A = UDVT = (UVT)(VDVT) = R(θ)R(-Ф)DR(Ф)

这表示 变换可以等效为如下过程:首先对坐标进行 Ф 角度旋转,然后分别在旋转后的 和 坐标方向进行比例为 λ和 λ的缩放,然后再旋转回去,最后再进行 θ 角度旋转。

仿射变换对如下属性具有不变性:平行线,平行线段的长度比例,面积比例。而对长度比例和角度没有不变性。

5. 投影变换

投影变换是一种齐次坐标下的非奇异线性变换,它的矩阵形式为:

              或              

它有9个自由度,但只有比例意义,因此它可由8个参数定义。两个平面之间的投影变换可以由4对匹配点(其中一个平面上的任意3点不共线)决定。

投影变换最基本的不变性是互比例(cross ratio),即4个共线点之间的比例的比例。

投影变换的分解:投影变换可分解为相似性变换 HS 、仿射变换 H投影变换 HP的级联,即


或者


投影变换分解的意义在于可以简化算法。例如,当仅仅想在一幅投影平面上测量长度比例时,则只要对该图像进行HP和HA的校正就够了,因为相似性变换HS对长度比例具有不变性。

6. 总结



作者: 萧振纲 出版社: 大连理工大学出版社 副标题: 几何变换与几何证题 出版年: 2010-5 页数: 749 定价: 88.00元 ISBN: 9787560329956 内容简介 · · · · · · 《几何变换与几何证题》所研究的几何变换仅限于平面上的合同变换、相似变换和反演变换这三类初等几何变换;《几何变换与几何证题》系统地阐述了这三类几何变换的理论和它们在几何证题方面的应用。阅读《几何变换与几何证题》只需要具有中学数学知识即可;对于阅读几何变换理论有困难的读者,也可以只阅读与几何证题有关的章节。 《几何变换与几何证题》适合大中师生及数学爱好者使用。 目录 · · · · · · 第1章 合同变换 1.1 映射·变换·变换群  1.2 合同变换及其性质 1.3 三种基本合同变换——平移、旋转、轴反射 1.4 合同变换与基本合同变换的关系 1.5 自对称图形 习题1第2章 相似变换 2.1 相似变换及其性质 22 基本相似变换——位似变换 2.3 位似旋转变换 2.4 位似轴反射变换 2.5 三相似图形 习题2第3章 平移变换与几何证题 3.1 平行四边形与平移变换 3.2 共线相等线段与平移变换 3.3 一般相等线段与平移变换 3.4 平行与平移变换 3.5 线段比及其他与平移变换 习题3第4章 旋转变换与几何证题 4.1 中点与中心反射变换 4.2 平行四边形及其他与中心反射变换 4.3 正三角形与旋转变换 4.4 正方形、等腰直角三角形与旋转变换 4.5 等腰三角形、相等线段与旋转变换 4.6 三角形的连接与旋转变换之积 习题4第5章 轴反射变换与几何证题 5.1 轴对称图形与轴反射变换 5.2 角平分线与轴反射变换 5.3 垂直与轴反射变换 5.4 与轴反射变换 5.5 内接四边形的两个基本性质 5.6 30°的角与轴反射变换 5.7 两类几何不等式与轴反射变换 5.8 轴反射变换处理其他问题举例 习题5第6章 位似变换与几何证题 6.1 线段比与位似变换 6.2 共点线、共线点与位似变换 6.3 Menelaus定理与Ceva定理 6.4 两与位似变换 6.5 平行及其他与位似变换 习题6第7章 位似旋转变换、位似轴反射变换与几何证题 7.1 三角形与位似旋转变换 7.2 同向相似三角形与位似旋转变换 7.3 两与位似旋转变换 7.4 等角线及其他与位似旋转变换 7.5 三角形的连接与位似旋转变换之积 7.6 位似轴反射变换与几何证题 习题7第8章 反演变换 8.1 反演变换及其性质 8.2 线段度量关系与反演变换 8.3 与反演变换 8.4 两的互反性 8.5 几何命题的反演命题 8.6 极点与极线 习题8附录 附录A 点对的幂·根轴·根心 附录B Menelaus定理与Ceva定理的角元形式参考解答参考文献编辑手记 萧振纲,教授。毕业于湖南师范大学数学系。长期致力于初等数学与竞赛数学的教学研究工作。自1984年开始,先后在国内外刊物上发表初等数学与竞赛数学的教学研究论文130余篇。 出版《几何变换与几何证题》学术专著1部;与他人合作出版《初等数论》教材一部;参与编写《初等几何研究》教材一部;在全国数学竞赛命题比赛中曾获一等奖;并先后为全国高中数学联赛,IMO中国国家集训队,IMO中国国家队选拔考试以及中国东南地区数学奥林匹克提供过平面几何试题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值