Transformer Networks: Transformer模型的一些关键要素和应用

本文深入探讨Transformer模型,包括其自注意力机制、位置编码原理,以及如何使用PyTorch实现Transformer Encoder。文章介绍了Transformer在NLP领域的应用,并详细展示了数据集准备和训练模型的代码实例。
摘要由CSDN通过智能技术生成

作者:禅与计算机程序设计艺术

1.简介

2017年,在深度学习领域中最火热的框架之一——TensorFlow被提出,其出现改变了神经网络模型的构建方式。随后基于Transformer模型的BERT、GPT-2等变体在NLP任务上获得了一系列的成就。那么,什么是Transformer?它又是如何工作的?Transformer模型背后的主要思想是什么?今天的主角就是来自微软亚洲研究院(MSRA)的Karen Robinson先生。Robinson先生是谷歌AI语言团队的成员之一,也是一位颇受欢迎的计算机科学教授。本文将从她的个人经验出发,结合她的研究领域背景,阐述Transformer模型的一些关键要素和应用。

2.Transformer概述

Transformer是一种用于序列到序列(sequence to sequence)转换的NLP模型。它由两层相同结构的自注意力机制组成。在第一个自注意力模块(self attention mechanism)中,输入序列中的每个元素可以与其他所有元素进行交互,并通过参数化的函数生成输出序列中的每个元素。第二个自注意力模块则生成整个序列的表示形式。两个自注意力模块之间的信息流动形成了一个编码器-解码器结构,使得Transformer能够处理长文档或音频数据。
Transformer模型的主要优点包括:

  1. 计算效率高:因为自注意力的计算复杂度只有O(
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值