从零开始大模型开发与微调:预训练模型BERT
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:自然语言处理(NLP), 预训练模型, BERT, 微调, 语义理解, 序列分类
1.背景介绍
1.1 问题的由来
在当今信息爆炸的时代,自然语言处理(Natural Language Processing, NLP)的应用变得越来越广泛,涉及文本理解、情感分析、机器翻译等多个领域。然而,对于复杂的NLP任务,传统的基于规则的方法已难以满足需求,而深度学习方法则展示了强大的潜力。其中,预训练模型因其能自动提取高阶特征并应用于多种下游任务而在NLP领域崭露头角。
1.2 研究现状
近年来,预训练模型如BERT、GPT等已成为研究热点。这些模型通过大规模无标注文本数据进行预训练,能够捕捉语言的普遍规律,并在后续任务上表现出卓越性能。BERT更是以其显著优势,将多项NLP基准任务的准确率提升至新高度,推动了整个领域的发展。
1.3 研究意义
预训练模型的出现不仅提高了特定任务的性能,更重要的是,它们简化了NLP系统的构建流程,减少了对大量标注数据