从零开始大模型开发与微调:预训练模型BERT

从零开始大模型开发与微调:预训练模型BERT

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

关键词:自然语言处理(NLP), 预训练模型, BERT, 微调, 语义理解, 序列分类

1.背景介绍

1.1 问题的由来

在当今信息爆炸的时代,自然语言处理(Natural Language Processing, NLP)的应用变得越来越广泛,涉及文本理解、情感分析、机器翻译等多个领域。然而,对于复杂的NLP任务,传统的基于规则的方法已难以满足需求,而深度学习方法则展示了强大的潜力。其中,预训练模型因其能自动提取高阶特征并应用于多种下游任务而在NLP领域崭露头角。

1.2 研究现状

近年来,预训练模型如BERT、GPT等已成为研究热点。这些模型通过大规模无标注文本数据进行预训练,能够捕捉语言的普遍规律,并在后续任务上表现出卓越性能。BERT更是以其显著优势,将多项NLP基准任务的准确率提升至新高度,推动了整个领域的发展。

1.3 研究意义

预训练模型的出现不仅提高了特定任务的性能,更重要的是,它们简化了NLP系统的构建流程,减少了对大量标注数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值