AI应用架构师必学:GNN驱动的舆情传播预测架构设计与实践
副标题:从图建模到实时预测的全流程解析
摘要/引言
问题陈述
在社交媒体时代,舆情传播具有速度快、范围广、影响深的特点(比如某热点事件可在1小时内覆盖千万用户)。传统舆情预测方法(如统计模型、LSTM时间序列模型)存在两大致命缺陷:
- 无法捕捉复杂关系:舆情传播本质是“用户-话题-媒体”的图结构互动(比如用户转发话题、媒体提及用户),而传统方法将数据 flatten 为序列或表格,丢失了关键的结构信息;
- 动态性处理差:舆情是实时变化的(新用户加入、新互动产生),传统静态模型无法适应图结构的动态更新,导致预测延迟高、准确性下降。
核心方案
本文提出GNN驱动的舆情传播预测架构,通过以下三步解决上述问题:
- 图建模:将舆情数据转换为“异质动态图”(包含用户、话题、媒体等多类型节点,以及转发、评论等多类型边);
- 动态表示学习:用**动态GNN(Temporal GNN)**捕捉图结构的时间依赖(如“用户A在t1转发话题X,用户B在t2评论用户A”的时序关系);
- 实时预测:结合GNN

订阅专栏 解锁全文
1682

被折叠的 条评论
为什么被折叠?



