与怀翱师兄交流——关于GNN做时间序列预测

本文概述了如何将图神经网络(GNN)与时序数据相结合,用于改进时序预测任务。通过理解图的节点和边的概念,以及图卷积或注意力机制如何处理邻居节点影响,作者分享了从纯图方法到结合时序特性的实践过程,包括特征提取、损失函数选择等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.图只是为了多变量

师兄给的论文整理链接

https://github.com/thunlp/GNNPapers

2. “我最近在看thuml组的autoformer,看代码了,想在这个基础上做点东西”

"可以,你找一个时序的方法,改进一下,再用图增强一下,就行了"

3.“纯用图不太好做,图神经网络,基本是图分类,节点分类问题比较多,预测基本是交通流量用的多,基本上也是会用一个时序的方法”

4.“嗯嗯,说白了,你数据中每一个变量就是图的一个节点,边、图邻接矩阵,根据你自己的情况有或没有,没有就要自己学”

5.“然后每个节点的输入就是时序数据,预测的话,图神经网络的假设就是节点的状态会收到邻居节点状态的影响”

6.“一般先提取一下时序特征,然后用图卷积或者图注意力,邻居节点相互影响一下”

7.“节点特征就是自己的时序特征受邻居节点影响后的特征,然后可以用深层,计算损失函数就行了,我一般就L1或者MSE”

师兄很谦虚,多多学习,感谢师兄简单几句话给GNN简单解释了一下图网络做时序预测的大致流程。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值