文章末尾对机器学习的规律总结。机器学习这么多算法记住是很难的,如果懂别人怎么想到这个算法的那就容易多了。学习机器学习一定不要死记。记住别人怎么想到这个算法以及各个概念之间的联系,各个方法有什么用,这些最重要。本文就是从还原算法怎么想到的角度来讲而不是纯粹推导,解释了各个概念之间的联系。
逻辑回归到底是什么?要优化什么参数?为何要优化这些参数?
逻辑回归它输入是样本,输出是样本输入某个类的概率。逻辑回归只能分类出两种类,是一个二分类算法。也就是说 f ( x ) f(x) f(x)输出是属于类A的概率。那么如果某个样本不属于A呢则它属于B的概率是 1 − P ( A ) = 1 − f ( x ) 1-P(A)=1-f(x) 1−P(A)=1−f(x)。因为逻辑回归输出的是A的概率 即 f ( x ) = P ( A ) 即f(x)=P(A) 即f(x)=P(A)。逻辑回归里面它认为模型是一条曲线。这条曲线的函数长下面这样,其中 w , b w,b w,b是我们要设置的参数。选择一种 w , b w,b <