4分钟看懂逻辑回归是什么?要优化什么参数?和极大似然法有什么关系?机器学习小总结

本文介绍了逻辑回归的概念,强调其作为二分类算法的特点,指出与线性回归的区别在于模型形式和优化方法。逻辑回归采用极大似然法优化参数,通过寻找使样本属于其标签类别的概率最大的参数。此外,还讨论了逻辑回归与神经网络的关系,并对机器学习算法的核心思路进行了总结。
摘要由CSDN通过智能技术生成

文章末尾对机器学习的规律总结。机器学习这么多算法记住是很难的,如果懂别人怎么想到这个算法的那就容易多了。学习机器学习一定不要死记。记住别人怎么想到这个算法以及各个概念之间的联系,各个方法有什么用,这些最重要。本文就是从还原算法怎么想到的角度来讲而不是纯粹推导,解释了各个概念之间的联系。

逻辑回归到底是什么?要优化什么参数?为何要优化这些参数?

逻辑回归它输入是样本,输出是样本输入某个类的概率。逻辑回归只能分类出两种类,是一个二分类算法。也就是说 f ( x ) f(x) f(x)输出是属于类A的概率。那么如果某个样本不属于A呢则它属于B的概率是 1 − P ( A ) = 1 − f ( x ) 1-P(A)=1-f(x) 1P(A)=1f(x)。因为逻辑回归输出的是A的概率 即 f ( x ) = P ( A ) 即f(x)=P(A) f(x)=P(A)。逻辑回归里面它认为模型是一条曲线。这条曲线的函数长下面这样,其中 w , b w,b w,b是我们要设置的参数。选择一种 w , b w,b <

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值