自然语言处理: RAT = CoT + RAG

RAT方法通过结合LLM的生成与检索信息,解决了长任务中的事实准确性问题,特别是在代码生成、数学推理等领域表现出显著性能提升,为AI推理能力设定了新标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Retrieval Augmented Thoughts (RAT) 是一种协同思维链 (CoT) 和检索增强生成 (RAG) 的 AI 提示策略,助力解决具有挑战性的长任务推理和生成。

RAG

有关于RAG的介绍可以参考我之前的博文: 自然语言处理: 第十五章RAG(Retrieval Augmented Generation)
开发能够像人类一样思考、推理并解决复杂问题的模型一直是人工智能研究的关键目标。大规模语言模型(LLM)处于此类研究的最前沿,旨在模拟人类对概念的理解和表达。然而,LLM在确保长任务推理中的事实准确性方面仍然面临着巨大挑战,经常会出现所谓的“幻觉”(hallucination)——模型会生成看似合理但实际上并不准确的信息。这种现象在需要一系列逻辑推理的场景中尤其明显,凸显了LLM在长任务推理过程中、精确推理和理解上下文的能力方面的差距。

为弥合这一差距,研究人员提出了各种方法旨在改进 LLM 的推理过程。一些较早的方法尝试将外部信息检索与模型生成的内容相结合,以确保模型输出的事实准确性。然而,这些方法通常无法动态地改进推理过程,导致产生的结果虽然有所改善,却仍然未能达到理想的上下文理解和准确性水平。

来自北京大学、加州大学洛杉矶分校和北京通用人工智能研究院的研究人员提出的 Retrieval Augmented Thoughts (RAT) 方法,旨在直接解决 LLM 中的事实准确性问题。RAT 是一种着重于迭代修正模型生成思路的新方法。通过利用与初始查询以及模型推理过程相关变动的信息,RAT 有效地缓解了幻觉问题。具体实现方法为:用从大型数据库中检索到的相关信息,去修正模型生成思维链的每一步,确保每个推理步骤都基于准确和相关的事实。

RAT 方法在各种长任务生成任务中表现出色,从生成复杂的代码到解决复杂的数学问题,以及撰写创意叙事、规划模拟环境中的行动方案。RAT 能稳定地提升 LLM 的性能,带来显著的性能提升。例如,代码生成任务的评分平均提高了 13.63%,数学推理的评分提高了 16.96%,创意写作的评分提高了 19.2%,在具体任务规划中的表现更是提升了 42.78%。这些成绩凸显了 RAT 作为一种通用解决方案在增强 LLM 推理能力方面的有效性和潜力。

在这里插入图片描述

RAT 的实现显示了LLM有可能达到一种更接近人类的推理和生成响应的能力。**通过使用与上下文相关的信息去迭代优化思考过程,该方法拓展了 LLM 可以实现目标的边界,**为人工智能生成内容的准确性、可靠性和语境意识设定了新的标准。
在这里插入图片描述

Retrieval Augmented Thoughts (RAT) 方法可以概括为以下几点:

  • 缩小了 LLM 在长任务推理中维持事实准确性能力方面的差距。
  • 通过用相关的检索信息来修正每个推理步骤,缓解了幻觉问题,确保输出结果高度贴合语境。
  • 在各种任务中展示了通用性,包括代码生成、数学推理、创意写作和任务规划,具有广泛的应用潜力。 为 LLM
  • 输出的性能、准确性和可靠性设定了新的基准,为 AI 推理能力的未来发展铺平了道路。
我正在编辑【通达信条件选股】代码,遇到了 【 单词最大字符数不得超过 15 个 错误起始位置 : 0 ; 长度: 0 】,请帮我检查并改正错误点补全正确代码,生成修正后完整代码。原有选股逻辑完整保留。我的原始代码如下:【// 智能选股系统 V8.3 OPT // █ 神经微分优化模块 PARAM_OPT := NEURAL_DIFFEVO( // 原名NEURAL_DIFFERENTIAL_EVOLUTION缩写 EPOCH := 3000, POP := 2000, MUT_RATE := ADAP_MUT(0.15,0.003), CROSS := TOP_CROSS(0.7), FITNESS := 0.7*SHARPE + 0.3*CALMAR, CONSTRAIN := [MAX_CHG<0.2, FEAT_IMP>0.05]); // █ 3D特征引擎 ALPHA_FACTOR := DEEP_FEAT_FUSE( T_STR := T_CONV( // T_STREAM缩写 [N_VOL(5,0.7), D_ORD(10,0.9)], // D_ORDER缩写 KERNEL := [3,5,7]), S_STR := SP_ATTN( // S_STREAM缩写 IND_CORR_MAT, SECT_EMB := 64), FUSE_LAYER := [ T_ENC(8,256), GBOOST_SEL(500,0.01)]); // █ 高频资金流 NORTH_FLOW := M_DRL( TIME_SCALE := [1M,5M,30M,1H], STATE_ENC := G_CONVNET( NODE_FEAT := [HKHOLD,IDX_FUT,ETF_FLOW], EDGE_W := X_CORR), REWARD := 1.4*RET_SMTH(0.9) - 0.3*VOL_DD + 0.2*FLOW_GRAD); // █ 波动引擎 VOL_REGIME := N_REGIME( VOL_COMP := [VOL_BAND, GARCH(1,1), JUMP_DIFF], TRANS_NET := TCN( IN_DIM := 6, LEVELS := 8, DILATE := 2), JUMP_DET := B_CP( // JUMP_DETECT缩写 PRIOR_A := 0.1, WARN_TH := 0.95)); // █ 行业轮动 IND_SCORE := 0.35*NLP_SENT( [NEWS,TWT,RED,INST_RSCH], // TWITTER缩写 T_DECAY := EXP(-0.07*DELAY), TOPIC_CLU := B_TOPIC(256)) + 0.30*ADAP_MOM( WINDOW := FOUR_AD(14), VOL_ADJ := TRUE, DECAY := 0.02) + 0.25*FLOW_M3D( LEAD_LAG := [1.2, 0.8], LIQ_MULT := VOL_SMTH) + 0.10*POLICY_SEN*(2.0 - 0.35*MKT_PHASE); // █ 信号融合 FINAL_SIGNAL := D_FUSION( INPUT := [ T_CONV(ALPHA_FACTOR, [3,5,7]), // 修正原ALPHA_STRM拼写 SP_ATTN(IND_CORR,64) ], FUSE_LAYER := [ T_ENC(8,256), GBOOST_SEL(500,0.01) ], ACT_COND := [ Q_SIG >= N_THRES(MKT_PH), VOL_RAT > 1.5*D_BETA, PRICE_Q(0.85,50), LIQ_SCORE>0.97, INST_FLOW>=3.2, ANOMALY_SC>NEURAL_ANO, FUND_CONF(3D,0.8) ], DYN_WEIGHT := N_WEIGHT(0.0005,20)); // █ 风控系统 RISK_CTRL := H_RISK( L1 := VOL_CAP(0.25,ADAP_SKEW), L2 := CORR_DIV( MAX_SECT := 0.15, MIN_DIVERG := 0.3), // MIN_DIVERGE缩写 L3 := BSWAN_PRO( STRESS_IDX>0.85, LIQ_FLOOR := 0.001, HEDGE := 0.3));】
最新发布
03-29
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曼城周杰伦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值