数据集-nuPlan

surroundocc需要nuPlan数据集

0. 前言

nuscenes by motional

1. nuplan介绍

是世界第一个针对自动驾驶规划方法测试的开源数据集(发布于2021年),收集了波士顿、匹兹堡、拉斯维加斯和新加坡这 4 个城市收集了大约 1300 小时的驾驶数据。

最直接就是看nuplan官网的介绍,和paper。如果只想大概扫一眼这里还有篇中文翻译的自动驾驶轨迹规划之nuplan数据集

一句话总结就是:和nuScenes同一家公司发布的,nuPlan是首个面向planning的大规模自动驾驶基准数据集,不仅包括大量的1200小时多城市的实车驾驶数据,还提供了一整套开环/闭环仿真、多种评价标准、ML规划器开发工具及可视化工具。

nuplan_v1.1数据量是1.8TB,这还不包括原始的传感器数据(摄像头、激光);它也有个mini版,nuplan_v1.1_mini,解压后是13g左右,7h的驾驶数据覆盖了大部分场景,但是原始传感器数据仍旧是非常大的。下图就是它的采集车(包含8个相机,5个激光,1个IMU)及数据可视化结果:
在这里插入图片描述

数据下载及环境安装

数据的使用基于官方的工具nuplan-devkit就行,数据下载直接上nuplan官网注册登陆后就能下载,学习只用nuplan_v1.1_mini版就够了,下载时选择Asia节点(国内会更快点)。如果是从头安装,具体的细节这部分有篇博客下载数据教程及环境配置_csdn中文写得很详细了,就不重复写了,感谢原博主X.ZHANG0825。另外官网也有对应环境安装和数据下载的教程nuplan-devkit Installation

虽然基于 ML 的运动规划器越来越多,但缺乏既定的数据集、模拟框架和评价指标,这也限制了该领域的进展。现有数据集(Argoverse、Lyft、Waymo) 主要侧重与对其他代理的短期运动预测,而不是自我车辆的长期规划。这导致之前的方法大多使用基于 L2 指标的开环评估,不适用于合理评估长期规划。为了解决上述问题,nuplan除了提供大规模实车数据集,还提供了基于学习的训练框架来开发基于机器学习的规划器、轻量级闭环模拟器、运动规划评价指标和可视化工具。
下图为其训练框架。
在这里插入图片描述

2. 安装

2.1 下载开发包devkit

首先,cd到希望的安装目录,然后在终端中运行以下代码:

git clone https://github.com/motional/nuplan-devkit.git
cd nuplan-devkit

2.2 安装指定版本的python

官方使用devkit 在 Ubuntu 上针对 Python 3.9 进行了测试,为了使用不出现bug,推荐安装python3.9,使用以下命令即可实现安装:

conda create -n nuplan python=3.9
conda activate nuplan
python -m pip install pip==24.0  -i https://pypi.tuna.tsinghua.edu.cn/simple
git clone https://github.com/motional/nuplan-devkit.git && cd nuplan-devkit
pip install -e .
pip install -r ./requirements.txt
pip install -r requirements_torch.txt
nuplan数据轨迹提取是指从nuplan数据集(一个用于自动驾驶研究和开发的开源数据集)中提取车辆、行人和交通标志等物体的运动轨迹。nuplan数据集包含了大量的自动驾驶场景数据,提取这些轨迹数据对于分析车辆行为、训练自动驾驶模型和验证算法性能非常重要。 以下是nuplan数据轨迹提取的一般步骤: 1. **数据准备**:下载并解压nuplan数据集,确保数据集的完整性。 2. **数据加载**:使用nuplan提供的API或工具加载数据集nuplan数据集通常包含传感器数据、车辆状态、地图信息等。 3. **数据解析**:解析加载的数据,提取出感兴趣的物体(如车辆、行人和交通标志)的位置和速度信息。 4. **轨迹生成**:根据提取的位置和速度信息生成物体的运动轨迹。通常可以使用时间戳来确保轨迹的时间顺序。 5. **数据存储**:将生成的轨迹数据存储为常用的数据格式,如CSV、JSON或数据库,以便后续分析和处理。 以下是一个简单的Python示例代码,展示了如何使用nuplan的API提取车辆轨迹: ```python import nuplan.database.nuplan_db as ndb from nuplan.database.nuplan_db import Scene, Log, EgoPose import pandas as pd # 连接到nuplan数据库 db = ndb.NuPlanDB('path_to_nuplan_db') # 选择一个场景 scene = db.scene[0] # 获取场景中的所有ego poses ego_poses = db.session.query(EgoPose).filter(EgoPose.scene_token == scene.token).all() # 提取轨迹数据 trajectory_data = [] for ego_pose in ego_poses: trajectory_data.append({ 'timestamp': ego_pose.timestamp, 'x': ego_pose.x, 'y': ego_pose.y, 'z': ego_pose.z, 'yaw': ego_pose.heading }) # 转换为DataFrame trajectory_df = pd.DataFrame(trajectory_data) # 保存为CSV文件 trajectory_df.to_csv('vehicle_trajectory.csv', index=False) ``` 通过上述步骤和代码示例,你可以从nuplan数据集中提取出车辆的运动轨迹,并将其保存为CSV文件以便后续分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周陽讀書

周陽也想繼往聖之絕學呀~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值