VIO Estimator::processIMU 函数

本文详细介绍了如何使用IMU数据进行位置、速度、加速度的积分计算,以及误差传递和方差估计。通过对每一帧IMU数据的处理,构建预积分对象并更新状态,包括位置、旋转、速度的增量。代码中使用了中值积分方法,并通过雅可比矩阵和方差传播来更新误差估计。此外,还涉及到了加速度和角速度的偏置处理。

如果获取了一帧IMU数据,就会通过这一帧IMU数据去对位置、速度、加速度等完成积分,并且计算方差等的传递,这些功能就在processIMU函数中完成,本章对该函数进行讲解。

    if (!first_imu)
    {
        first_imu = true;
        acc_0 = linear_acceleration;
        gyr_0 = angular_velocity;
    }
    if (!pre_integrations[frame_count])
    {
        pre_integrations[frame_count] = new IntegrationBase{acc_0, gyr_0, Bas[frame_count], Bgs[frame_count]};
        /*
        cout<<"************************"<<endl;
        cout<<"pre integrations: "<<frame_count<<endl<<"acc_0: "<<endl<<acc_0<<endl<<"gyr_0: "<<endl<<gyr_0<<endl<<"Bas: "<<Bas[frame_count]<<endl<<"Bgs: "<<Bgs[frame_count]<<endl;
        cout<<"************************"<<endl;*/
    }

首先是判断是否为第一帧IMU, 是指整个过程第一帧IMU,而不是一次预积分的第一帧,利用IMU的数据对acc_0和gyr_0进行赋值,然后构建一个预积分的类IntegrationBase类,Bas是加速度的bias,Bgs是角速度的bias,其构建函数如下,构建了以下几个数据:

acc_0:加速度初始值

gyr_0:角速度初始值

linearized_acc:?

linearized_gyr:?

linearized_ba:?

linearized_bg:?

jacobian:雅可比?

covariance:方差

sun_t:总时间

delta_p:增加的位置

delta_q:增加的旋转角度

delta_v:增加的速度

    IntegrationBase(const Eigen::Vector3d &_acc_0, const Eigen::Vector3d &_gyr_0,
                    const Eigen::Vector3d &_linearized_ba, const Eigen::Vector3d &_linearized_bg)
        : acc_0{_acc_0}, gyr_0{_gyr_0}, linearized_acc{_acc_0}, linearized_gyr{_gyr_0},
          linearized_ba{_linearized_ba}, linearized_bg{_linearized_bg},
            jacobian{Eigen::Matrix<double, 15, 15>::Identity()}, covariance{Eigen::Matrix<double, 15, 15>::Zero()},
          sum_dt{0.0}, delta_p{Eigen::Vector3d::Zero()}, delta_q{Eigen::Quaterniond::Identity()}, delta_v{Eigen::Vector3d::Zero()}

    {
        noise = Eigen::Matrix<double, 18, 18>::Zero();
        noise.block<3, 3>(0, 0) =  (ACC_N * ACC_N) * Eigen::Matrix3d::Identity();
        noise.block<3, 3>(3, 3) =  (GYR_N * GYR_N) * Eigen::Matrix3d::Identity();
        noise.block<3, 3>(6, 6) =  (ACC_N * ACC_N) * Eigen::Matrix3d::Identity();
        noise.block<3, 3>(9, 9) =  (GYR_N * GYR_N) * Eigen::Matrix3d::Identity();
        noise.block<3, 3>(12, 12) =  (ACC_W * ACC_W) * Eigen::Matrix3d::Identity();
        noise.block<3, 3>(15, 15) =  (GYR_W * GYR_W) * Eigen::Matrix3d::Identity();
    }

接下来是对传入的加速度、角速度的具体处理,pre_integrations会对时间、加速度、角速度进行具体的处理,见附录一,处理结束后,pre_integrations会获得一个更新后的位置、速度、加速度值,以及雅可比和方法,estimator也会存储他的dt, 加速度和角速度, 同时同时用Rs来记录选装,Ps来记录位置,Vs来记录速度,完成了一帧的IMU数据处理。

   if (frame_count != 0)
    {
        pre_integrations[frame_count]->push_back(dt, linear_acceleration, angular_velocity); //这里有复杂的处理过程,会进行积分和误差传递
        //if(solver_flag != NON_LINEAR)
        tmp_pre_integration->push_back(dt, linear_acceleration, angular_velocity);

        dt_buf[frame_count].push_back(dt);
        linear_acceleration_buf[frame_count].push_back(linear_acceleration);
        angular_velocity_buf[frame_count].push_back(angular_velocity);

        int j = frame_count;
        Vector3d un_acc_0 = Rs[j] * (acc_0 - Bas[j]) - g;
        Vector3d un_gyr = 0.5 * (gyr_0 + angular_velocity) - Bgs[j];
        Rs[j] *= Utility::deltaQ(un_gyr * dt).toRotationMatrix();
        Vector3d un_acc_1 = Rs[j] * (linear_acceleration - Bas[j]) - g;
        Vector3d un_acc = 0.5 * (un_acc_0 + un_acc_1);
        Ps[j] += dt * Vs[j] + 0.5 * dt * dt * un_acc;
        Vs[j] += dt * un_acc;
    }

 

附录一:pre_integrations的push_back函数如下,dt_buf、acc_buf、gyr_buff几个buff内存储了输入的时间、加速度、角速度值,并且利用propagate函数进行运动积分,主要功能是在midPointInteration函数中,采用的是中值积分

    void push_back(double dt, const Eigen::Vector3d &acc, const Eigen::Vector3d &gyr)
    {
        dt_buf.push_back(dt);
        acc_buf.push_back(acc);
        gyr_buf.push_back(gyr);
        propagate(dt, acc, gyr);
    }

    void propagate(double _dt, const Eigen::Vector3d &_acc_1, const Eigen::Vector3d &_gyr_1)
    {
        dt = _dt;
        acc_1 = _acc_1;
        gyr_1 = _gyr_1;
        Vector3d result_delta_p;
        Quaterniond result_delta_q;
        Vector3d result_delta_v;
        Vector3d result_linearized_ba;
        Vector3d result_linearized_bg;

        midPointIntegration(_dt, acc_0, gyr_0, _acc_1, _gyr_1, delta_p, delta_q, delta_v,
                            linearized_ba, linearized_bg,
                            result_delta_p, result_delta_q, result_delta_v,
                            result_linearized_ba, result_linearized_bg, 1);

        //checkJacobian(_dt, acc_0, gyr_0, acc_1, gyr_1, delta_p, delta_q, delta_v,
        //                    linearized_ba, linearized_bg);
        delta_p = result_delta_p;
        delta_q = result_delta_q;
        delta_v = result_delta_v;
        linearized_ba = result_linearized_ba;
        linearized_bg = result_linearized_bg;
        delta_q.normalize();
        sum_dt += dt;
        acc_0 = acc_1;
        gyr_0 = gyr_1;  
     
    }

代码如下,计算得到当前时刻的状态量,误差雅可比,以及方差,delta_p, delta_q, delta_v分别是相对于预先积分初始帧的位置、角度、速度的增加量,t时刻值的基础上,利用传入的数据进行中值积分,就获得t+1时刻的值,另外还有两个偏差ba和bg,对于delta_q由于其是单位向量,因此需要normalizeaiton(),对acc_0和gyr_0也分别进行更新。

    void midPointIntegration(double _dt, 
                            const Eigen::Vector3d &_acc_0, const Eigen::Vector3d &_gyr_0,
                            const Eigen::Vector3d &_acc_1, const Eigen::Vector3d &_gyr_1,
                            const Eigen::Vector3d &delta_p, const Eigen::Quaterniond &delta_q, const Eigen::Vector3d &delta_v,
                            const Eigen::Vector3d &linearized_ba, const Eigen::Vector3d &linearized_bg,
                            Eigen::Vector3d &result_delta_p, Eigen::Quaterniond &result_delta_q, Eigen::Vector3d &result_delta_v,
                            Eigen::Vector3d &result_linearized_ba, Eigen::Vector3d &result_linearized_bg, bool update_jacobian)
    {
        //ROS_INFO("midpoint integration");
        Vector3d un_acc_0 = delta_q * (_acc_0 - linearized_ba); //去bias,添加旋转获得acc
        Vector3d un_gyr = 0.5 * (_gyr_0 + _gyr_1) - linearized_bg; //去bias,获得加速度
        result_delta_q = delta_q * Quaterniond(1, un_gyr(0) * _dt / 2, un_gyr(1) * _dt / 2, un_gyr(2) * _dt / 2); //获得新的delta_q
        Vector3d un_acc_1 = result_delta_q * (_acc_1 - linearized_ba); //计算acc_1的去bias
        Vector3d un_acc = 0.5 * (un_acc_0 + un_acc_1); //中值加速度
        result_delta_p = delta_p + delta_v * _dt + 0.5 * un_acc * _dt * _dt; //累加得到delta_p
        result_delta_v = delta_v + un_acc * _dt; //累加得到delta_v
        result_linearized_ba = linearized_ba; //获得a的bias
        result_linearized_bg = linearized_bg; //获得角速度的bias       

        if(update_jacobian)
        {
            Vector3d w_x = 0.5 * (_gyr_0 + _gyr_1) - linearized_bg;
            Vector3d a_0_x = _acc_0 - linearized_ba;
            Vector3d a_1_x = _acc_1 - linearized_ba;
            Matrix3d R_w_x, R_a_0_x, R_a_1_x;

            R_w_x<<0, -w_x(2), w_x(1),
                w_x(2), 0, -w_x(0),
                -w_x(1), w_x(0), 0;
            R_a_0_x<<0, -a_0_x(2), a_0_x(1),
                a_0_x(2), 0, -a_0_x(0),
                -a_0_x(1), a_0_x(0), 0;
            R_a_1_x<<0, -a_1_x(2), a_1_x(1),
                a_1_x(2), 0, -a_1_x(0),
                -a_1_x(1), a_1_x(0), 0;

            MatrixXd F = MatrixXd::Zero(15, 15);
            F.block<3, 3>(0, 0) = Matrix3d::Identity();
            F.block<3, 3>(0, 3) = -0.25 * delta_q.toRotationMatrix() * R_a_0_x * _dt * _dt + 
                                  -0.25 * result_delta_q.toRotationMatrix() * R_a_1_x * (Matrix3d::Identity() - R_w_x * _dt) * _dt * _dt;
            F.block<3, 3>(0, 6) = MatrixXd::Identity(3,3) * _dt;
            F.block<3, 3>(0, 9) = -0.25 * (delta_q.toRotationMatrix() + result_delta_q.toRotationMatrix()) * _dt * _dt;
            F.block<3, 3>(0, 12) = -0.25 * result_delta_q.toRotationMatrix() * R_a_1_x * _dt * _dt * -_dt;
            F.block<3, 3>(3, 3) = Matrix3d::Identity() - R_w_x * _dt;
            F.block<3, 3>(3, 12) = -1.0 * MatrixXd::Identity(3,3) * _dt;
            F.block<3, 3>(6, 3) = -0.5 * delta_q.toRotationMatrix() * R_a_0_x * _dt + 
                                  -0.5 * result_delta_q.toRotationMatrix() * R_a_1_x * (Matrix3d::Identity() - R_w_x * _dt) * _dt;
            F.block<3, 3>(6, 6) = Matrix3d::Identity();
            F.block<3, 3>(6, 9) = -0.5 * (delta_q.toRotationMatrix() + result_delta_q.toRotationMatrix()) * _dt;
            F.block<3, 3>(6, 12) = -0.5 * result_delta_q.toRotationMatrix() * R_a_1_x * _dt * -_dt;
            F.block<3, 3>(9, 9) = Matrix3d::Identity();
            F.block<3, 3>(12, 12) = Matrix3d::Identity();
            //cout<<"A"<<endl<<A<<endl;

            MatrixXd V = MatrixXd::Zero(15,18);
            V.block<3, 3>(0, 0) =  0.25 * delta_q.toRotationMatrix() * _dt * _dt;
            V.block<3, 3>(0, 3) =  0.25 * -result_delta_q.toRotationMatrix() * R_a_1_x  * _dt * _dt * 0.5 * _dt;
            V.block<3, 3>(0, 6) =  0.25 * result_delta_q.toRotationMatrix() * _dt * _dt;
            V.block<3, 3>(0, 9) =  V.block<3, 3>(0, 3);
            V.block<3, 3>(3, 3) =  0.5 * MatrixXd::Identity(3,3) * _dt;
            V.block<3, 3>(3, 9) =  0.5 * MatrixXd::Identity(3,3) * _dt;
            V.block<3, 3>(6, 0) =  0.5 * delta_q.toRotationMatrix() * _dt;
            V.block<3, 3>(6, 3) =  0.5 * -result_delta_q.toRotationMatrix() * R_a_1_x  * _dt * 0.5 * _dt;
            V.block<3, 3>(6, 6) =  0.5 * result_delta_q.toRotationMatrix() * _dt;
            V.block<3, 3>(6, 9) =  V.block<3, 3>(6, 3);
            V.block<3, 3>(9, 12) = MatrixXd::Identity(3,3) * _dt;
            V.block<3, 3>(12, 15) = MatrixXd::Identity(3,3) * _dt;

            //step_jacobian = F;
            //step_V = V;
            jacobian = F * jacobian; //误差的传递
            covariance = F * covariance * F.transpose() + V * noise * V.transpose(); //方差的传递
        }

    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值