富集分析DAVID、Metascape、Enrichr、ClueGO

前言

一般我们挑出一堆感兴趣的基因想临时看看它们的功能,需要做个富集分析。虽然公司买了最新版的数据库,如KEGG,但在集群跑下来嫌麻烦。这时网页在线或者本地化工具派上用场了。

DAVID

DAVID地址
以前我会首选DAVID,原因是方便简单。有人说它数据库更新慢,不准确(据说被science点名批评了),也有人说它运行慢,数据库更新慢是硬伤,但我只是大概看下基因集的功能,总体结果不会差到哪里去。至于运行速度我反而觉得比其他工具更快。
使用方法:
image.png
image.png
注释结果有很多,挑自己感兴趣的数据库,我一般看GO和KEGG。
image.png
校正下超几何检验的Pvalue值,查看结果,结果都有链接,很方便查看。
image.png
image.png

但是DAVID没有可视化结果,临时看一看还行。

Metascape

Meatascape地址
Metascape是Cytoscape的一个插件,其数据更新快,覆盖面广泛。整合了GO、KEGG、UniProt和DrugBank等多个权威的数据库,使其不仅能完成通路富集和生物过程注释,还能做基因相关的蛋白质网络分析和涉及到的药物分析。
image.png

默认分析Express Analysis

image.png

针对小白,直接生成一个简单明了的报告,图文并茂,结果包括富集总括、基因列表、基因注释、富集分析、蛋白互作富集等。并且可以下载excel表,ppt和zip压缩文件。
image.png

image.png

image.png

网络图还可保存为CYS格式,后续放到cytoscape中进行编辑。

image.png

定制分析CustomAnalysis
Annotation可以根据自己的需要,选择感兴趣的,想在结果中体现的基因注释查看与基因注释 相关的文章")项目来进行勾选。勾选完成之后,点击左上角的Apply按钮运行。

image.png

Membership支持用户自行选择通路富集、生物过程富集、功能相关和产物分析等每一个注释步骤所用到的数据集,并可以在搜索框中输入感兴趣的字段,比如GO中的某一个或某几个term,或者一些功能性的描述,以便进行更有针对性地分析。
输入完成感兴趣的字段之后,点击左侧的Search按钮进行查找,之后点击左上方Apply生成这一步骤的结果。
image.png

Enrichment支持用户选择通路和功能富集过程中的各项指标,以及蛋白质互作网络形成过程中的各项指标。用户可以根据自己的需求,来设定显著性阈值,网络中包含元素的最大或最小值,以及分析步骤中想用到的数据集等参数。
image.png

生成报告
image.png

报告形式同上。
image.png

Enrichr

Enrichr地址
除了支持gene list,还支持bed文件,但支持的gene ID种类比较少。

image.png

Enrichr结果将多个数据库进行比较。除了常用的富集分析,还可展示表观修饰、转录因子结合以及疾病和不同细胞类型中的表达。

image.png

但是它展示结果比较单一,各个数据库结果差异也较大,个人不是很喜欢。

ClueGO

ClueGO也是Cytoscape的插件,在cytoscape中本地化安装使用,除了做功能富集外,主要是具有强大的绘图功能,目前被很多文章引用。
image.png

以上工具中,DAVID和Metascape甚至clusterProfiler等R包的结果我都只作为参考,真正做分析的时候还是需要用最新的数据库。当然,Metascape和ClueGO可作为后期绘图补充。

转载于:https://www.cnblogs.com/jessepeng/p/10936084.html

### 基因通路富集分析方法与工具 #### 使用DAVID进行基因通路富集分析 DAVID是一个强大的在线平台,提供全面的功能注释和富集分析服务。用户只需上传感兴趣的基因列表,选择合适的背景基因集以及设定参数即可完成分析。该工具能够识别出显著富集的生物过程、分子功能及细胞组件,并以表格形式呈现结果[^1]。 ```python import pandas as pd from bioservices import KEGG, DAVID david_service = DAVID() kegg_service = KEGG() # 设置API密钥并登录到DAVID Web Service API api_key = 'your_api_key_here' david_service.set_credentials(api_key) # 准备待分析的数据文件路径 input_file_path = './gene_list.txt' # 提交作业给DAVID服务器 job_id = david_service.addList(input_file_path)['id'] # 获取富集分析的结果链接 result_url = f"https://david.ncifcrf.gov/content.jsp?file={job_id}&tool=summary" print(f"查看完整的富集报告请访问 {result_url}") ``` #### 利用Metascape实现综合性的基因和通路富集分析 Metascape是一款集成式的Web应用程序,它不仅限于单一类型的富集测试,而是提供了更为广泛的视角来审视输入基因集合。除了传统的GO术语之外,还涵盖了KEGG Pathway、Reactome等多种资源的信息检索能力。此外,其独特的交互界面允许研究人员轻松浏览不同层次上的关联模式及其统计意义。 #### 运用Enrichr执行快速便捷的在线富集查询 对于那些寻求简单易用解决方案的研究人员来说,Enrichr无疑是最理想的选择之一。无需注册账户或安装额外软件,仅需复制粘贴目标基因ID至指定区域便能立即获得详尽而直观的结果概览图表。更重要的是,这个网站持续更新维护着多个版本的人类和其他物种特异性库供访客选用。 #### R语言包`clusterProfiler`助力本地化定制开发 如果偏好编程环境下的操作方式,则可以考虑采用专门设计用于R统计计算生态系统的`clusterProfiler`扩展包来进行更深入细致的工作流程构建。此模块内置了丰富的算法选项和支持多样的输出格式转换函数,非常适合追求灵活性和技术细节掌控度较高的团队使用。 ```r library(clusterProfiler) library(org.Hs.eg.db) # 定义差异表达基因向量 diff_expressed_genes <- c("TP53", "BRCA1") # 执行GO富集分析 go_enrichment_result <- enrichGO(gene = diff_expressed_genes, universe = keys(org.Hs.eg.db), keyType = "SYMBOL", ont = "BP", pAdjustMethod = "BH", qvalueCutoff = 0.05) # 展示前五个最显著项 head(as.data.frame(go_enrichment_result), n = 5L) ``` #### GSEA软件包针对排序后的基因集合开展评估 不同于上述几种侧重于离散型个体成员属性检测的方式,Gene Set Enrichment Analysis(GSEA)专注于考察整个样本集中按某种标准排列好的序列内部是否存在某些预定义类别过度聚集的现象。这种方法特别适用于探究复杂条件下微弱却一致的变化趋势,在肿瘤学等领域有着广泛的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值