【控制】鲁棒性 H2 H无穷


首先要明白什么是鲁棒,什么是 H ∞ H_\infty H。这两个概念是独立的。

1 鲁棒

鲁棒指系统在不确定参数(parameter uncertainties)摄动下,系统维持其自身某种性能(稳定、某指标)的特性。鲁棒性的主要问题是高频的未建模动态。

应该注意的是,我们在进行鲁棒稳定性分析时,要将干扰与控制输入置0。

2 H ∞ H_\infty H

H ∞ H_\infty H 是对传递函数增益大小的一个度量指标,简单说就是一个系统输入输出的放大倍数。

H H H 无穷的标准问题实际是:求解已真有理(解析有界)的控制器 K K K,使外输入 W W W 到加权输入 Z Z Z 的传递函数阵的 H H H 无穷范数最小。翻译过来就是,由于我们一般考虑线性系统,直接运用闭环系统稳定性分析的 LMI 进一步公式推导,直至导出矩阵元素中含有某一参数(性能指标)的 LMI,运用 MATLAB 求解即可。

3 鲁棒 H ∞ H∞ H 控制

鲁棒 H ∞ H∞ H 控制就是抑制噪声到期望输出之间的传递函数集的最大增益,从而达到抗扰的目的。其实顾名思义,鲁棒 H H H 无穷就是研究系统既包含不确定性,又要求达到某一性能指标。鲁棒 H ∞ H∞ H 控制具有较强的保守性。

总结:研究系统鲁棒性,就是研究包含不确定参数的系统。研究H无穷,就是研究满足某性能指标的系统。

From: 如何理解鲁棒H无穷控制理论?


现代鲁棒控制理论中,特别是多入多出系统(MIMO), H 2 H_2 H2 问题和 H ∞ H_\infty H 问题占据着中心地位,其中 H 2 H_2 H2 问题(也是一种特殊情况的 LQG问题 )研究的最多,最成熟,但是应用的却最少,相反却很大的促进了对线性系统的研究,也为 H ∞ H_\infty H 问题的提出和解决铺平了道路。

H 2 H_2 H2 问题以最小化输出能量为控制其设计目标,上世纪六七十年代,人们把主要的研究投入到这个问题,由 H 2 H_2 H2 问题引出的 H 2 H_2 H2 控制,优化目标中没有考虑扰动(噪声),把只针对白噪声或者某一个噪声的信号有效果,此外现实中广为使用的乘法不确定性也很难考虑,而且 H 2 H_2 H2 范数不是诱导范数,数学运算受到很大限制,虽然 H 2 H_2 H2 控制可以把目标值优化为0,但实际应用中,不确定噪声很大衰减了性能及 其稳定性。

在80年代,传递函数的 H ∞ H_\infty H 范数才被提出并被Doyle成功应用到鲁棒控制中, 线性系统的鲁棒控制得以完成, H ∞ H_\infty H 控制最小化传递函数(阵)的 H ∞ H_\infty H 范数,也是传递函数矩阵最大奇异值的最大值,与 H 2 H_2 H2 控制对比,它以最小化最大奇异值的最大值(也可以形象地说是传递函数的峰值),只要求扰动和不确定性有界,而且 H ∞ H_\infty H 范数是 L 2 L_2 L2诱导范数,数学运算更加方便。九十年代只是针 对结构不确定性的 H ∞ H_\infty H 问题提出了结构奇异值综合法,并针对 H ∞ H_\infty H 问题提出了更好的算法,分别针对解析解( H ∞ H_\infty H 次优解等)和数值解 (LMI-线形矩阵不等式)两个方向发展,其中的LMI得以广泛的发展和推崇。

当然非线性系统的鲁棒控制, H ∞ H_\infty H 的思想也有很好的应用。

第一次看鲁棒控制感觉扑朔迷离,理论艰深,特别是本科刚毕业时,需要很多的知识需要补充,矩阵分析是最基本的,复变函数,线性泛函,线性系统理论都是必修课。这些完成之后就可以学习鲁棒控制了,个人认为 H 2 H_2 H2 问题虽然应用少,但是理解了 H 2 H_2 H2 H ∞ H_\infty H 就顺理成章,有的牛人讲课时,只讲 H 2 H_2 H2 问题, H ∞ H_\infty H 一笔带过。

Ref: 鲁棒控制中的H2问题和H-inf问题-转


一、 H 2 H_2 H2 范数的计算

考虑线性时不变系统(多变量)
x ˙ = A x + B u y = C x \dot{x} = A x + B u \\ y = Cx x˙=Ax+Buy=Cx

求解下列 Lyapunov 方程
A L c + L c A T = − B B T A L_c + L_c A^T = -B B^T ALc+LcAT=BBT

代入
∥ G ( s ) ∥ 2 = t r a c e ( C L c C T ) \|G(s)\|_2 = \sqrt{trace( C L_c C^T )} G(s)2=trace(CLcCT)

或者求解
A T L o + L o A = − C T C A^T L_o + L_o A = -C^T C ATLo+LoA=CTC

代入
∥ G ( s ) ∥ 2 = t r a c e ( B T L o B ) \|G(s)\|_2 = \sqrt{trace( B^T L_o B )} G(s)2=trace(BTLoB)

Matlab 求解 Lyapunov 方程
A X + X A T + C = 0 X = l y a p ( A , C ) AX+XA^T+C=0\\ X = lyap(A,C) AX+XAT+C=0X=lyap(A,C)

对于单变量系统的传递函数
∥ G ( s ) ∥ 2 = 1 j 2 π ∮ G ( − s ) G ( s ) d s \|G(s)\|_2 = \sqrt{\frac{1}{j2\pi}\oint G(-s) G(s) ds} G(s)2=j2π1G(s)G(s)ds

等于 G ( − s ) G ( s ) G(-s)G(s) G(s)G(s) 在左半平面上的留数之和的平方根。

例子:
G ( s ) = 1 s + 1 G(s) = \frac{1}{s+1} G(s)=s+11

G ( s ) G ( − s ) G(s)G(-s) G(s)G(s) 在左半平面上的极点为 s = − 1 s=-1 s=1,那么在该极点上的留数为
lim ⁡ s → − 1 ( s + 1 ) 1 − s + 1 1 s + 1 = 1 2 \lim_{s\rightarrow -1} (s+1) \frac{1}{-s+1} \frac{1}{s+1} = \frac{1}{2} s1lim(s+1)s+11s+11=21

所以
∥ G ( s ) ∥ 2 = 1 2 \|G(s)\|_2 = \frac{1}{\sqrt{2}} G(s)2=2 1

function [gamma]=H2()
%{
程序功能:
1、使用迭代法计算传递函数G为矩阵时的H2范数。
2、求解ALc+LcA'+BB'=0,代入sqrt(trace(CLcC'))
3、求解A'Lo+LoA+C'C=0,代入sqrt(trace(B'LoB))
4、Matlab求解Lyapunov方程
AX+XA^T+C=0
X=lyap(A,C)
%}
    clear,clc
    A=[2,3 ;5,3];
    B=[3;5];
    C=[1, 0];
    D=0; %给出系统矩阵
    n=max(size(A));
    I=eye(2,2);
    Lc=lyap(A,B*B');
    gamma=sqrt(trace(C*Lc*C')) %方法1
    
    Lo=lyap(A',C'*C) ;
    gamma=sqrt(trace(B'*Lo*B)) %方法2
    
    
end

二、 H ∞ H_\infty H 范数的计算

在这里插入图片描述

Ref: 鲁棒控制理论(十)计算系统H2范数和H∞范数


H 2 H_2 H2 H ∞ H_\infty H 优化控制理论》

绪论

1. H 2 H_2 H2 控制

最优控制理论中的线性二次型性能指标
J = ∫ 0 ∞ [ x T ( t ) Q x ( t ) + u T ( t ) R u ( t ) ] d t J = \int_0^\infty [x^T(t) Q x(t) + u^T(t) R u(t)]dt J=0[xT(t)Qx(t)+uT(t)Ru(t)]dt

如果被控过程的数学模型用随机过程模型描述,且干扰信号是高斯白噪声(有限谱信号),则相应的线性二次型最优控制问题称为 LQG 问题,其性能指标为
J = lim ⁡ T → ∞ 1 T E { ∫ 0 ∞ [ x T ( t ) Q x ( t ) + u T ( t ) R u ( t ) ] d t } J = \lim_{T\rightarrow\infty} \frac{1}{T} E\{ \int_0^\infty [x^T(t) Q x(t) + u^T(t) R u(t)]dt \} J=TlimT1E{0[xT(t)Qx(t)+uT(t)Ru(t)]dt}

其中 E E E 为数学期望。

可以证明,上述 LQG 问题的性能指标等价于从随机干扰信号到系统被控输出信号的传函(阵)的 H 2 H_2 H2 范数

上述 LQG 问题可以等价地表述为:设计反馈控制器 K K K,使闭环系统稳定,同时使从 w w w z z z 的闭环传函阵 G z w ( s ) G_{zw}(s) Gzw(s) H 2 H_2 H2 范数达到极小,即
min ⁡ K ∥ G z w ( s ) ∥ 2 = γ 0 \min_{K} \| G_{zw}(s) \|_2 = \gamma_0 KminGzw(s)2=γ0

称为 H 2 H_2 H2 最优控制问题。若给定 γ > γ 0 \gamma>\gamma_0 γ>γ0,求反馈控制器 K K K,使
∥ G z w ( s ) ∥ 2 < γ \| G_{zw}(s) \|_2 < \gamma Gzw(s)2<γ

则称为 H 2 H_2 H2 次优控制问题。统称为 H 2 H_2 H2 标准控制问题

2. 鲁棒控制

一种典型的不确定系统模型的基本形式是
y = ( P + Δ ) u + n y = (P + \Delta) u + n y=(P+Δ)u+n

这里 y y y 是输出, u u u 是输入, P P P 是标称对象的传函,模型的不确定性以两种形式出现: n n n 是未知噪声或干扰, Δ \Delta Δ 是未知的对象摄动(未建模动态)。

一般地说,鲁棒性概念是指反馈控制系统的某项性能对于某集合中的每一个对象都是成立的。具体地说,我们有如下鲁棒性定义。

(1)鲁棒稳定性。设计一个控制器,使对每一个摄动后的对象,都能保证闭环系统的稳定性。

(2)鲁棒性能。设计一个控制器,使对每一个摄动后的对象,闭环系统都满足稳定性和某种特定的系统性能。

可见,上述鲁棒性概念是指给定一个控制器,如果某集合中的每一个对象都能保持某种特性成立,则称控制器对此特性是鲁棒的。因此,谈及鲁棒性必要求有一个控制器,有一个对象的集合某些系统特性

3. H ∞ H_\infty H 控制

考虑从 r r r e e e 的误差传函(灵敏度函数)
S ( s ) = E ( s ) R ( s ) = 1 1 + P ( s ) K ( s ) S(s) = \frac{E(s)}{R(s)} = \frac{1}{1+ P(s)K(s)} S(s)=R(s)E(s)=1+P(s)K(s)1

我们的任务是设计控制器 K ( s ) K(s) K(s),使得
∣ S ( j ω ) ∣ < γ , ∀ ω |S(j\omega)| < \gamma, \forall \omega S(jω)<γ,ω

其中 0 < γ ≤ 1 0<\gamma\le1 0<γ1。即将控制误差(偏差)控制在工程允许的范围内。上式两端对 ω \omega ω 取上确界,得到
sup ⁡ ω ∣ S ( j ω ) ∣ < γ \sup_{\omega} |S(j\omega)| < \gamma ωsupS(jω)<γ

将上式左端定义为 S ( s ) S(s) S(s) ∞ \infty -范数(norm),即
∥ S ( s ) ∥ ∞ = sup ⁡ ω ∣ S ( j ω ) ∣ \|S(s)\|_\infty = \sup_\omega |S(j\omega)| S(s)=ωsupS(jω)

H ∞ H_\infty H 最优控制问题:设计控制器 K ( s ) K(s) K(s),使闭环系统保持稳定,且使 ∥ S ( s ) ∥ ∞ \|S(s)\|_\infty S(s) 达极小。即
inf ⁡ K { sup ⁡ ω ∣ S ( j ω ) ∣ } = inf ⁡ K ∥ S ( j ω ) ∥ ∞ = γ 0 \inf_{K} \{\sup_{\omega} |S(j\omega)|\} = \inf_{K} \|S(j\omega)\|_\infty = \gamma_0 Kinf{ωsupS(jω)}=KinfS(jω)=γ0

亦称为极大极小化问题。

H ∞ H_\infty H 次优控制问题:给定 γ > γ 0 \gamma>\gamma_0 γ>γ0,设计控制器 K ( s ) K(s) K(s),使闭环系统保持稳定,且使
∥ S ( s ) ∥ ∞ < γ \|S(s)\|_{\infty} < \gamma S(s)<γ

H 2 H_2 H2 控制问题不同, H ∞ H_\infty H 最优控制问题难于求解,通常是以 H ∞ H_\infty H 次优控制问题的解去逼近 H ∞ H_\infty H 最优控制问题的解,并将 H ∞ H_\infty H 次优控制问题称为 H ∞ H_\infty H 标准控制问题。

对于多变量系统,传函阵 G z w G_{zw} Gzw H ∞ H_\infty H 范数定义为
∥ G z w ∥ ∞ = sup ⁡ ω σ ˉ { G z w ( j ω ) } \|G_{zw}\|_\infty = \sup_\omega \bar{\sigma} \{ G_{zw}(j\omega) \} Gzw=ωsupσˉ{Gzw(jω)}

其中 σ ˉ = λ max ⁡ ( G ∗ G ) 1 2 \bar{\sigma} = {\lambda_{\max} (G^* G) }^{\frac12} σˉ=λmax(GG)21,为 G G G 的最大奇异值, G ∗ G^* G G G G 的共轭转置阵, λ max ⁡ \lambda_{\max} λmax 为最大特征值。

在图1所示标准控制问题中,如果评价信号 z z z 为向量信号,并将其分块为 z = { z 1 T , z 2 T , ⋯   , z m T } T z=\{z_1^T, z_2^T, \cdots, z_m^T \}^T z={z1T,z2T,,zmT}T,记从 w w w z i ( i = 1 , 2 , ⋯   , m ) z_i(i=1,2,\cdots,m) zi(i=1,2,,m) 的闭环传函阵为 G z i w ( s ) G_{z_i w}(s) Gziw(s),取 G z i w ( s ) G_{z_i w}(s) Gziw(s) H 2 H_2 H2 范数或 H ∞ H_{\infty} H 范数,就得到相应的 H 2 H_2 H2 H ∞ H_{\infty} H 多目标控制问题。

如果将 z z z 分块为 z = { z 1 T , z 2 T } T z=\{z_1^T, z_2^T\}^T z={z1T,z2T}T,且取
∥ G z 1 w ( s ) ∥ 2 < γ 1 , ∥ G z 2 w ( s ) ∥ ∞ < γ 2 \|G_{z_1w}(s)\|_2 < \gamma_1, \|G_{z_2w}(s)\|_\infty < \gamma_2 Gz1w(s)2<γ1,Gz2w(s)<γ2

则相应的标准控制问题称为 H 2 / H ∞ H_2/H_\infty H2/H 混合控制问题。

第一章 数学基础知识

第二章 线性二次型最优调节器

第三章 参数化控制器设计

第四章 H ∞ H_\infty H 标准控制

第五章 时滞系统的 H ∞ H_\infty H 控制

第六章 H 2 H_2 H2 标准控制

第七章 H 2 / H ∞ H_2/H_\infty H2/H 混合控制

H2和H∞混合鲁棒控制是一种常用于系统控制的方法。MATLAB是一种功能强大的数学计算软件,也提供了用于系统控制的工具箱,可以方便地进行H2和H∞混合鲁棒控制的设计和求解。 对于H2混合鲁棒控制,首先需要确定系统的状态空间模型,包括系统的状态方程和输出方程。然后使用MATLAB提供的控制工具箱中的"H2syn"函数进行计算。该函数可以根据给定的系统模型和性能权重,计算出系统H2混合鲁棒控制器,并返回该控制器的传递函数形式。 对于H∞混合鲁棒控制,同样需要确定系统的状态空间模型,并为系统的性能指标选择适当的权重函数。然后使用MATLAB中的"Hinfstruct"函数进行计算。该函数可以根据给定的系统模型和权重函数,通过迭代求解来计算系统的H∞混合鲁棒控制器。 在MATLAB中,可以按照以下步骤进行H2和H∞混合鲁棒控制的求解: 1.定义系统的状态空间模型,并将其转换为MATLAB中的对应形式。 2.根据性能要求,选择适当的性能指标权重函数。 3.使用MATLAB中相应的函数,如"H2syn"或"Hinfstruct",进行混合鲁棒控制器的计算。 4.根据求解得到的混合鲁棒控制器传递函数,可以进行模拟和实验验证。 总之,MATLAB提供了强大的工具和函数,可以方便地进行H2和H∞混合鲁棒控制的求解。只需要根据系统的状态空间模型和性能要求,选择适当的函数,并按照相应的步骤进行计算,即可得到混合鲁棒控制器。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhao-Jichao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值