文章目录
第二章 输入饱和下的两类特殊系统的全局一致性
2.1 引言
2.2 输入饱和下的中立系统的全局一致性
输入饱和的中立系统为:
x
˙
i
=
A
x
i
+
B
σ
Δ
(
u
i
)
,
i
=
1
,
2
,
⋯
,
N
(2-1)
\begin{aligned} \dot{x}_i = A x_i + B \sigma_\Delta (u_i), \quad i=1,2,\cdots, N \end{aligned} \tag{2-1}
x˙i=Axi+BσΔ(ui),i=1,2,⋯,N(2-1)
σ Δ \sigma_\Delta σΔ 是标量型包和函数,定义为 σ Δ ( u i ) = sign ( u i ) min { ∣ u i ∣ , Δ } \sigma_\Delta(u_i) = \text{sign} (u_i) \min \{|u_i|, \Delta \} σΔ(ui)=sign(ui)min{∣ui∣,Δ},其中 Δ \Delta Δ 是一个正实数。
领导者的动力学为:
x
˙
0
=
A
x
0
(2-2)
\begin{aligned} \dot{x}_0 = A x_0 \end{aligned} \tag{2-2}
x˙0=Ax0(2-2)
全局一致性的控制目标为
lim t → ∞ x i ( t ) − x 0 ( t ) = 0 \begin{aligned} \lim_{t\rightarrow \infty} x_i(t) - x_0(t) = 0 \end{aligned} t→∞limxi(t)−x0(t)=0
2.2.1 固定的通信拓扑
对所有智能体的动力学做一次线性变化。存在一个非奇异矩阵
T
T
T,使得
A
ˉ
=
T
−
1
A
T
=
[
S
0
0
G
]
\bar{A} = T^{-1} A T = \left[\begin{matrix} S & 0 \\ 0 & G \\ \end{matrix}\right]
Aˉ=T−1AT=[S00G]
其中 S ∈ R m 1 × m 1 S \in \R^{m_1 \times m_1} S∈Rm1×m1 是反对称矩阵, G ∈ R ( m − m 1 ) × ( m − m 1 ) G \in \R^{(m-m_1) \times (m-m_1)} G∈R(m−m1)×(m−m1) 是 Hurwitz 矩阵。
令 x i = T z i x_i = T z_i xi=Tzi。则跟随者的动力学(2-1)可以写成
领导者的动力学(2-2)可以写成
z
˙
0
=
A
ˉ
z
0
\dot{z}_0 = \bar{A} z_0
z˙0=Aˉz0
定义块对角矩阵
P
=
[
I
m
1
0
0
P
2
]
P = \left[\begin{matrix} I_{m_1} & 0 \\ 0 & P_2 \\ \end{matrix}\right]
P=[Im100P2]
其中 P 2 P_2 P2 是一个正定矩阵并且满足不等式 P 2 G + G T P 2 < 0 P_2 G + G^\text{T} P_2 < 0 P2G+GTP2<0。
跟随者的线性反馈一致性算法
u
i
=
−
(
P
T
−
1
B
)
T
T
−
1
(
∑
j
=
1
N
a
i
j
(
x
i
−
x
j
)
+
a
i
0
(
x
i
−
x
0
)
)
(2-4)
u_i = - (P T^{-1} B)^\text{T} T^{-1} (\sum_{j=1}^N a_{ij} (x_i - x_j) + a_{i0} (x_i - x_0)) \tag{2-4}
ui=−(PT−1B)TT−1(j=1∑Naij(xi−xj)+ai0(xi−x0))(2-4)
2.2.2 变化的通信拓扑
若 ∥ x i ( t ) − x h ( t ) ∥ ≥ R \| x_i(t) - x_h(t) \| \ge R ∥xi(t)−xh(t)∥≥R,则 ( v i , v j ) ∈ E ˉ ( t ) (v_i, v_j) \in \bar{\mathcal{E}}(t) (vi,vj)∈Eˉ(t)。
定义 z ˉ i j = ( x i − x j ) T ( T − 1 ) T P ( T − 1 ) ( x i − x j ) ≥ 0 \bar{z}_{ij} = (x_i - x_j)^\text{T} ~ (T^{-1})^\text{T} P (T^{-1}) ~ (x_i - x_j) \ge 0 zˉij=(xi−xj)T (T−1)TP(T−1) (xi−xj)≥0
一致性算法为
u
i
=
−
B
ˉ
T
∑
j
∈
N
ˉ
i
(
t
)
∂
V
i
j
(
z
ˉ
i
j
)
∂
z
i
(2-5)
u_i = - \bar{B}^\text{T} \sum_{j \in \bar{N}_i(t)} \frac{\partial V_{ij}(\bar{z}_{ij})}{\partial z_i} \tag{2-5}
ui=−BˉTj∈Nˉi(t)∑∂zi∂Vij(zˉij)(2-5)
2.3 输入饱和下的双积分器系统的全局一致性
跟随者的动力学为:
{
r
˙
i
=
q
i
q
˙
i
=
σ
Δ
(
u
i
)
(2-7)
\left\{\begin{aligned} &\dot{r}_i = q_i \\ &\dot{q}_i = \sigma_\Delta(u_i) \\ \end{aligned}\right. \tag{2-7}
{r˙i=qiq˙i=σΔ(ui)(2-7)
领航者的为
{
r
˙
0
=
q
0
q
˙
0
=
0
(2-8)
\left\{\begin{aligned} &\dot{r}_0 = q_0 \\ &\dot{q}_0 = 0 \\ \end{aligned}\right. \tag{2-8}
{r˙0=q0q˙0=0(2-8)
控制目标为:
lim
t
→
∞
r
i
(
t
)
−
r
0
(
t
)
=
0
,
lim
t
→
∞
q
i
(
t
)
−
q
0
(
t
)
=
0
\lim_{t \rightarrow \infty} r_i(t) - r_0(t) = 0, \quad \lim_{t \rightarrow \infty} q_i(t) - q_0(t) = 0
t→∞limri(t)−r0(t)=0,t→∞limqi(t)−q0(t)=0
2.3.1 固定的通信拓扑
线性反馈一致性算法:
领航者的为
u
i
=
−
∑
j
=
1
N
a
i
j
(
r
i
−
r
j
)
−
a
i
0
(
r
i
−
r
0
)
−
∑
j
=
1
N
a
i
j
(
q
i
−
q
j
)
−
a
i
0
(
q
i
−
q
0
)
(2-8)
\begin{aligned} u_i =& - \sum_{j = 1}^N a_{ij} (r_i - r_j) - a_{i0}(r_i - r_0) \\ &- \sum_{j = 1}^N a_{ij} (q_i - q_j) - a_{i0}(q_i - q_0) \\ \end{aligned} \tag{2-8}
ui=−j=1∑Naij(ri−rj)−ai0(ri−r0)−j=1∑Naij(qi−qj)−ai0(qi−q0)(2-8)
2.3.2 变化的网络拓扑
2.4 数值仿真
2.4.1 中立系统
针对固定拓扑的仿真结果(Main_2016_Eg241_1.m):
又试了下控制协议(2-4)中没有前边的矩阵运算的结果,发现这个结果与论文比较相似,这有点奇怪。
接下来是针对切换拓扑得情况(Main_2016_Eg241_2.m):
2.4.2 双积分器系统
固定拓扑:
切换拓扑: