【Paper】2016_输入饱和下的多智能体系统的全局一致性研究_赵芝芸

该文深入探讨了输入饱和条件下两类特殊系统的全局一致性问题,包括中立系统和双积分器系统。通过变换和线性反馈控制策略,提出了在固定和变化通信拓扑下的控制算法,确保系统最终达到领导者与跟随者状态的一致。数值仿真验证了算法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第二章 输入饱和下的两类特殊系统的全局一致性

2.1 引言

2.2 输入饱和下的中立系统的全局一致性

输入饱和的中立系统为:
x ˙ i = A x i + B σ Δ ( u i ) , i = 1 , 2 , ⋯   , N (2-1) \begin{aligned} \dot{x}_i = A x_i + B \sigma_\Delta (u_i), \quad i=1,2,\cdots, N \end{aligned} \tag{2-1} x˙i=Axi+BσΔ(ui),i=1,2,,N(2-1)

σ Δ \sigma_\Delta σΔ 是标量型包和函数,定义为 σ Δ ( u i ) = sign ( u i ) min ⁡ { ∣ u i ∣ , Δ } \sigma_\Delta(u_i) = \text{sign} (u_i) \min \{|u_i|, \Delta \} σΔ(ui)=sign(ui)min{ui,Δ},其中 Δ \Delta Δ 是一个正实数。

领导者的动力学为:
x ˙ 0 = A x 0 (2-2) \begin{aligned} \dot{x}_0 = A x_0 \end{aligned} \tag{2-2} x˙0=Ax0(2-2)

全局一致性的控制目标为

lim ⁡ t → ∞ x i ( t ) − x 0 ( t ) = 0 \begin{aligned} \lim_{t\rightarrow \infty} x_i(t) - x_0(t) = 0 \end{aligned} tlimxi(t)x0(t)=0

2.2.1 固定的通信拓扑

对所有智能体的动力学做一次线性变化。存在一个非奇异矩阵 T T T,使得
A ˉ = T − 1 A T = [ S 0 0 G ] \bar{A} = T^{-1} A T = \left[\begin{matrix} S & 0 \\ 0 & G \\ \end{matrix}\right] Aˉ=T1AT=[S00G]

其中 S ∈ R m 1 × m 1 S \in \R^{m_1 \times m_1} SRm1×m1 是反对称矩阵, G ∈ R ( m − m 1 ) × ( m − m 1 ) G \in \R^{(m-m_1) \times (m-m_1)} GR(mm1)×(mm1) 是 Hurwitz 矩阵。


x i = T z i x_i = T z_i xi=Tzi。则跟随者的动力学(2-1)可以写成


领导者的动力学(2-2)可以写成
z ˙ 0 = A ˉ z 0 \dot{z}_0 = \bar{A} z_0 z˙0=Aˉz0


定义块对角矩阵
P = [ I m 1 0 0 P 2 ] P = \left[\begin{matrix} I_{m_1} & 0 \\ 0 & P_2 \\ \end{matrix}\right] P=[Im100P2]

其中 P 2 P_2 P2 是一个正定矩阵并且满足不等式 P 2 G + G T P 2 < 0 P_2 G + G^\text{T} P_2 < 0 P2G+GTP2<0


跟随者的线性反馈一致性算法
u i = − ( P T − 1 B ) T T − 1 ( ∑ j = 1 N a i j ( x i − x j ) + a i 0 ( x i − x 0 ) ) (2-4) u_i = - (P T^{-1} B)^\text{T} T^{-1} (\sum_{j=1}^N a_{ij} (x_i - x_j) + a_{i0} (x_i - x_0)) \tag{2-4} ui=(PT1B)TT1(j=1Naij(xixj)+ai0(xix0))(2-4)

2.2.2 变化的通信拓扑

∥ x i ( t ) − x h ( t ) ∥ ≥ R \| x_i(t) - x_h(t) \| \ge R xi(t)xh(t)R,则 ( v i , v j ) ∈ E ˉ ( t ) (v_i, v_j) \in \bar{\mathcal{E}}(t) (vi,vj)Eˉ(t)

定义 z ˉ i j = ( x i − x j ) T   ( T − 1 ) T P ( T − 1 )   ( x i − x j ) ≥ 0 \bar{z}_{ij} = (x_i - x_j)^\text{T} ~ (T^{-1})^\text{T} P (T^{-1}) ~ (x_i - x_j) \ge 0 zˉij=(xixj)T (T1)TP(T1) (xixj)0


一致性算法为
u i = − B ˉ T ∑ j ∈ N ˉ i ( t ) ∂ V i j ( z ˉ i j ) ∂ z i (2-5) u_i = - \bar{B}^\text{T} \sum_{j \in \bar{N}_i(t)} \frac{\partial V_{ij}(\bar{z}_{ij})}{\partial z_i} \tag{2-5} ui=BˉTjNˉi(t)ziVij(zˉij)(2-5)


2.3 输入饱和下的双积分器系统的全局一致性

跟随者的动力学为:
{ r ˙ i = q i q ˙ i = σ Δ ( u i ) (2-7) \left\{\begin{aligned} &\dot{r}_i = q_i \\ &\dot{q}_i = \sigma_\Delta(u_i) \\ \end{aligned}\right. \tag{2-7} {r˙i=qiq˙i=σΔ(ui)(2-7)

领航者的为
{ r ˙ 0 = q 0 q ˙ 0 = 0 (2-8) \left\{\begin{aligned} &\dot{r}_0 = q_0 \\ &\dot{q}_0 = 0 \\ \end{aligned}\right. \tag{2-8} {r˙0=q0q˙0=0(2-8)

控制目标为:
lim ⁡ t → ∞ r i ( t ) − r 0 ( t ) = 0 , lim ⁡ t → ∞ q i ( t ) − q 0 ( t ) = 0 \lim_{t \rightarrow \infty} r_i(t) - r_0(t) = 0, \quad \lim_{t \rightarrow \infty} q_i(t) - q_0(t) = 0 tlimri(t)r0(t)=0,tlimqi(t)q0(t)=0

2.3.1 固定的通信拓扑

线性反馈一致性算法:
领航者的为
u i = − ∑ j = 1 N a i j ( r i − r j ) − a i 0 ( r i − r 0 ) − ∑ j = 1 N a i j ( q i − q j ) − a i 0 ( q i − q 0 ) (2-8) \begin{aligned} u_i =& - \sum_{j = 1}^N a_{ij} (r_i - r_j) - a_{i0}(r_i - r_0) \\ &- \sum_{j = 1}^N a_{ij} (q_i - q_j) - a_{i0}(q_i - q_0) \\ \end{aligned} \tag{2-8} ui=j=1Naij(rirj)ai0(rir0)j=1Naij(qiqj)ai0(qiq0)(2-8)

2.3.2 变化的网络拓扑

2.4 数值仿真

2.4.1 中立系统

针对固定拓扑的仿真结果(Main_2016_Eg241_1.m):

在这里插入图片描述

又试了下控制协议(2-4)中没有前边的矩阵运算的结果,发现这个结果与论文比较相似,这有点奇怪。
在这里插入图片描述


接下来是针对切换拓扑得情况(Main_2016_Eg241_2.m):
在这里插入图片描述


2.4.2 双积分器系统

固定拓扑:

在这里插入图片描述

在这里插入图片描述


切换拓扑:

在这里插入图片描述


在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhao-Jichao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值