引言
近年来,预训练的大型语言模型(LLMs)在自然语言处理(NLP)领域取得了显著的进展,尤其是在问答任务中。这些模型通过在大规模互联网语料库上进行训练,积累了丰富的事实知识、关系知识和语言知识。然而,这些模型仍面临着许多挑战,比如缺乏领域专业知识、生成内容的幻觉以及难以整合时效性信息。本文提出了一种混合的检索增强生成(RAG)系统,通过一系列优化措施显著提高了模型的检索质量、推理能力以及数值计算能力。
RAG系统的背景
检索增强生成(RAG)是一种通过集成外部知识库来增强大型语言模型准确性和减少幻觉的框架。在传统的RAG系统中,检索器从外部知识源中提取相关文本,并将其与用户查询结合,作为生成模型的输入。通过这种方式,RAG能够在不牺牲模型的泛化能力的情况下,获取领域特定的知识。这种方法有效地缓解了幻觉问题,并使模型能够生成更准确和信息丰富的响应。
相关工作
为了解决大型语言模型面临的挑战,研究者们提出了多种技术。其中,正式验证可以帮助减少幻觉并输出经过验证的推理过程。尽管许多方法被提出,但大多数都是针对特定问题和有限场景,难以直接应用于复杂的CRAG任务。