捷联惯导系统学习2.1(反对称矩阵)

不可交换误差

产生原因:imu在非定轴旋转时,其姿态运动的数学模型是线性时变的,其在实际应用时使用离散量求解时,并不能还原原来的姿态。

直观理解
相对你自己取du一个坐标系,向zhi右为x,向前为y,向上为z
你的右手,先绕z转动90度,然后绕y转90度,记下你手掌的朝向
然后把右手回到初始时候,先绕y转动90度,然后绕z转90度,发现和刚才的结果不一样

解决:现代高精度陀螺仪使用角增量信号输出,构造旋转矩阵补偿和降低不可交换误差

反对称矩阵(V是实向量)

叉程在在为3维空间上的物理意义:求两个向量所构成平面的垂直向量
V = [ V x V y V z ] V =\left[ \begin{matrix} V_x & V_y& V_z \\ \end{matrix} \right] V=[VxVyVz]
V × = [ 0 − V z V y V z 0 − V z − V y V z 0 ] V \times=\left[ \begin{matrix} 0 & -V_z& V_y \\ V_z & 0 &-V_z\\ -V_y & V_z &0\\ \end{matrix} \right] V×=0VzVyVz0VzVyVz0

推导
V 1 = [ V x 1 V y 1 V z 1 ] V_1 =\left[ \begin{matrix} V_{x1} & V_{y1}& V_{z1} \\ \end{matrix} \right] V1=[Vx1Vy1Vz1]
V 2 = [ V x 2 V y 2 V z 2 ] V_2 =\left[ \begin{matrix} V_{x2} & V_{y2}& V_{z2} \\ \end{matrix} \right] V2=[Vx2Vy2Vz2]

V 1 × V 2 = [ i j k V x 1 V y 1 V z 1 V x 2 V y 2 V z 2 ] = [ V y 1 ∗ V z 2 − V y 2 ∗ V z 1 V x 2 ∗ V z 1 − V x 1 ∗ V z 2 V x 1 ∗ V y 2 − V x 2 ∗ V y 1 ] [ i j k ] V_1 \times V_2=\left[\begin{matrix} i&j&k\\ V_{x1}&V_{y1}&V_{z1}\\ V_{x2}&V_{y2}&V_{z2}\\ \end{matrix}\right]=\left[\begin{matrix} V_{y1}*V_{z2}-V_{y2}*V_{z1}\\ V_{x2}*V_{z1}-V_{x1}*V_{z2}\\ V_{x1}*V_{y2}-V_{x2}*V_{y1}\\ \end{matrix}\right]\left[\begin{matrix} i\\j\\k\\ \end{matrix}\right] V1×V2=iVx1Vx2jVy1Vy2kVz1Vz2=Vy1Vz2Vy2Vz1Vx2Vz1Vx1Vz2Vx1Vy2Vx2Vy1ijk = [ 0 − V z 1 V y 1 V z 1 0 − V x 1 − V y 1 V x 1 0 ] [ V x 2 V y 2 V z 2 ] = ( V 1 × ) ∗ V 2 =\left[ \begin{matrix} 0 & -V_{z1}& V_{y1} \\ V_{z1} & 0 &-V_{x1}\\ -V_{y1} & V_{x1}&0\\ \end{matrix} \right]\left[\begin{matrix} V_{x2}\\V_{y2}\\V_{z2}\\ \end{matrix}\right]=(V_1\times)*V_2 =0Vz1Vy1Vz10Vx1Vy1Vx10Vx2Vy2Vz2=(V1×)V2

反对称矩阵特点
1 转置 V × = − ( V × T ) V\times=-(V\times^T) V×=(V×T)
V T ( V × ) = 0 V^T(V\times)=0 VT(V×)=0
2 Hermite转置(共轭转置实部不变,虚部转换符号) V × = − ( V × ) ( V × ) H V\times=-(V\times)(V\times)^H V×=(V×)(V×)H
3 正规矩阵 ( V × ) ( V × ) H = ( V × ) H ( V × ) (V\times)(V\times)^H=(V\times)^H(V\times) (V×)(V×)H=(V×)H(V×)
4 特征值
f ( λ ) = ∣ λ V z − V y − V z λ V x V y − V x λ ∣ = λ ( λ 2 + V x 2 + V y 2 + V z 2 ) f(\lambda)=\left|\begin{matrix} \lambda & V_{z}& -V_{y} \\ -V_{z} & \lambda &V_{x}\\ V_{y} & -V_{x}&\lambda\\ \end{matrix} \right|=\lambda(\lambda^2+V_x^2+V_y^2+V_z^2) f(λ)=λVzVyVzλVxVyVxλ=λ(λ2+Vx2+Vy2+Vz2)
{ λ 1 = 0 λ 2 , λ 3 = ± V x 2 + V y 2 + V z 2 ∗ j \begin{cases} \lambda_1=0\\ \lambda_2,\lambda_3=\pm\sqrt{V_x^2+V_y^2+V_z^2}*j\\ \end{cases} {λ1=0λ2,λ3=±Vx2+Vy2+Vz2 j
特征向量 A x = λ x ; 令 V x 2 + V y 2 + V z 2 = v Ax=\lambda x;令\sqrt{V_x^2+V_y^2+V_z^2}=v Ax=λx;Vx2+Vy2+Vz2 =v
{ u 1 = 1 v [ V x V y V z ] u 2 , u 3 = 1 v 2 ( V x 2 + V y 2 ) [ − V x V z ∓ j v V y − V y V z ± j v V x V x 2 + V y 2 ] \begin{cases} u_1={\frac{1}{v}}\left[\begin{matrix} V_{x} \\ V_{y} \\ V_{z}\\ \end{matrix} \right]\\ u_2,u_3={\frac{1}{v\sqrt{2(V_x^2+V_y^2)}}}\left[\begin{matrix} -V_{x}V_{z}\mp jvV_y \\ -V_{y}V_z\pm jvV_x \\ V_{x}^2+V_{y}^2\\ \end{matrix} \right]\\\\ \end{cases} u1=v1VxVyVzu2,u3=v2(Vx2+Vy2) 1VxVzjvVyVyVz±jvVxVx2+Vy2
5 幂
V × = { ( − 1 ) i − 2 2 v i − 1 ( V × ) , ( i = 1 , 3 , 5 , . . . ) ( − 1 ) i − 2 2 v i − 2 ( V × ) , ( i = 2 , 4 , 6 , . . . ) V\times=\begin{cases} (-1)^{\frac{i-2}{2}}v^{i-1}(V\times),(i=1,3,5,...)\\ (-1)^{\frac{i-2}{2}}v^{i-2}(V\times),(i=2,4,6,...)\\ \end{cases} V×={(1)2i2vi1(V×),(i=1,3,5,...)(1)2i2vi2(V×),(i=2,4,6,...)
6 指数
根据哈密顿-凯莱定义(Hamiltion-Cayley):指数函数可以展开为指数项的有项级数
e ( V × ) = ∑ i = 0 n ( V × ) i i ! = k 0 I + k 1 ( V × ) + k 2 ( V × ) 2 e^{(V\times)}=\sum_{i=0}^n\frac{(V\times)^i}{i!}=k_0I+k_1(V\times)+k_2(V\times)^2 e(V×)=i=0ni!(V×)i=k0I+k1(V×)+k2(V×)2
= I + s i n v v V × + 1 − c o s v v 2 ( V × ) 2 =I+\frac{sinv}{v}V\times+\frac{1-cosv}{v^2}(V\times)^2 =I+vsinvV×+v21cosv(V×)2
反对称矩阵维单位正交矩阵
e − V × ∗ [ e − V × ] T = 1 e^{-V\times}*[e^{-V\times}]^T=1 eV×[eV×]T=1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值