卷积神经网络卷积核概述

一、简介
卷积核就是图像处理时,给定输入图像,输入图像中一个小区域中像素加权平均后成为输出图像中的每个对应像素,其中权值由一个函数定义,这个函数称为卷积核。

二、卷积核概述
卷积核其实在图像处理中并不是新事物,Sobel 算子等一系列滤波算子,一直都在被用于边缘检测等工作中,只是以前被称为 Filter。做图像处理的同学应该有印象。
卷积核具有的一个属性就是局部性。即它只关注局部特征,局部的程度取决于卷积核的大小。比如用 Sobel 算子进行边缘检测,本质就是比较图像邻近像素的相似性。
也可以从另外一个角度理解卷积核的意义。学过信号处理的同学应该记得,时域卷积对应频域相乘。所以原图像与卷积核的卷积,其实是对频域信息进行选择。比如,图像中的边缘和轮廓属于是高频信息,图像中某区域强度的综合考量属于低频信息。在传统图像处理里,这是指导设计卷积核的一个重要方面。
CNN中的卷积核
CNN 中的卷积核跟传统的卷积核本质没有什么不同。仍然以图像为例,卷积核依次与输入不同位置的图像块做卷积,得到输出,如图:

在这里插入图片描述

同时,CNN 有一些它独特的地方,比如各种定义:
1. CNN 可以看作是 DNN 的一种简化形式,即这里卷积核中的每一个权值就可以看成是 DNN 中的 ,且与 DNN 一样,会多一个参数偏置。
2. 一个卷积核在与 Input 不同区域做卷积时,它的参数是固定不变的。放在 DNN 的框架中理解,就是对同一层 Layer 中的神经元而言,它们的 和 是相同的,只是所连接的节点在改变。因此在 CNN 里,这叫做 共享权值偏置。
3. 在 CNN 中,卷积核可能是高维的。假如输入是 维的,那么一般 卷积核就会选择为 维,也就是与输入的 Depth 一致。
4. 最重要的一点,在 CNN 中,卷积核的权值不需要提前设计,而是跟 DNN 一样利用 GD 来优化,我们只需要初始化。
5. 如上面所说,其实卷积核卷积后得到的会是原图的某些特征(如边缘信息),所以在 CNN 中,卷积核卷积得到的 Layer 称作特征图。
6. 一般 CNN 中两层之间会含有多个卷积核,目的是学习出 Input 的不同特征,对应得到多个特征图。又由于卷积核中的参数是通过 GD 优化得到而非我们设定的,于是初始化就显得格外重要了。

卷积神经网络(convolutional neural network,CNN)是指至少在网络的一层中使用卷积运算来代替一般的矩阵乘法运算的神经网络,因此命名为卷积神经网络。
我们以灰度图像为例进行讲解:从一个小小的权重矩阵,也就是卷积核(kernel)开始,让它逐步在二维输入数据上“扫描”。卷积核“滑动”的同时,计算权重矩阵和扫描所得的数据矩阵的乘积,然后把结果汇总成一个输出像素。深度学习里面所谓的卷积运算,其实它被称为互相关(cross-correlation)运算:将图像矩阵中,从左到右,由上到下,取与滤波器同等大小的一部分,每一部分中的值与滤波器中的值对应相乘后求和,最后的结果组成一个矩阵,其中没有对核进行翻转。
【填充(Padding)】
前面可以发现,输入图像与卷积核进行卷积后的结果中损失了部分值,输入图像的边缘被“修剪”掉了(边缘处只检测了部分像素点,丢失了图片边界处的众多信息)。这是因为边缘上的像素永远不会位于卷积核中心,而卷积核也没法扩展到边缘区域以外。
这个结果我们是不能接受的,有时我们还希望输入和输出的大小应该保持一致。为解决这个问题,可以在进行卷积操作前,对原矩阵进行边界填充(Padding),也就是在矩阵的边界上填充一些值,以增加矩阵的大小,通常都用“0”来进行填充的。在CNN中,进行卷积操作时一般会以卷积核模块的一个位置为基准进行滑动,这个基准通常就是卷积核模块的中心。若卷积核为奇数,卷积锚点很好找,自然就是卷积模块中心,但如果卷积核是偶数,这时候就没有办法确定了,让谁是锚点似乎都不怎么好。

三、总结
本篇文章中我们简要的对卷积核进行了介绍,本期我们对神经网络的分享就到此结束了,下面我们也将会持续对此部分内容进行更新。

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
CNN,即卷积神经网络(Convolutional Neural Networks),是一种深度学习模型,广泛应用于图像识别、处理和分类任务。它是深度学习领域的一个重要分支,与传统的神经网络相比,CNN通过引入卷积层,可以更好地处理局部和上下文信息,并且具有很好的空间适应性。 CNN的主要特点包括: 1. 卷积层:CNN的核心在于卷积层,该层利用滑动窗口在输入数据上滑动,同时对窗口附近的像素进行加权平均得到该位置的卷积结果。这种操作能够有效地捕捉输入数据中的局部和上下文信息。 2. 池化(Pooling)技术:卷积神经网络通常结合池化技术以减少特征地图的大小,并保持某些区域的权重比其他区域更高,这在神经网络中引入了空间下的“稀疏性”。 3. 深度:CNN通常具有多层的卷积层和池化层,这使得CNN具有很强的特征学习和分类能力。随着网络深度的增加,CNN能够学习到越来越复杂的特征表示。 4. 适应性:CNN对输入数据的形状具有适应性,这意味着它可以轻松处理不同形状和大小的输入数据。 卷积神经网络在计算机视觉、自然语言处理、机器人视觉等领域有广泛应用,尤其是在图像分类、目标检测、图像生成等领域表现出了强大的性能。虽然CNN已经取得了许多成功,但它仍在不断发展和改进,如使用自注意力机制、跨通道信息融合等新技术,以进一步提高性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值