笔记:指数函数的瞬时效用函数的情况

最大化问题为
U = ∫ t = 0 ∞ e − ρ t l n C ( t ) L ( t ) H d t s . t . ∫ t = 0 ∞ e − R ( t ) C ( t ) L ( t ) H d t = W U=\int _{t=0}^{\infty} e^{-\rho t} ln C(t)\frac{L(t)}{H}dt \\\quad\\ s.t. \quad \int_{t=0}^\infty e^{-R(t)}C(t)\frac{L(t)}{H}dt=W U=t=0eρtlnC(t)HL(t)dts.t.t=0eR(t)C(t)HL(t)dt=W
其中 W = K ( 0 ) H + ∫ t = 0 ∞ A ( t ) w ( t ) L ( t ) H d t W=\frac{K(0)}{H}+\int _{t=0}^\infty A(t)w(t)\frac{L(t)}{H}dt W=HK(0)+t=0A(t)w(t)HL(t)dt
拉格朗日函数为
L = ∫ t = 0 ∞ e − ρ t l n C ( t ) L ( t ) H d t + λ ( W − ∫ t = 0 ∞ e − R ( t ) C ( t ) L ( t ) H d t ) \mathcal{L}=\int _{t=0}^{\infty} e^{-\rho t} ln C(t)\frac{L(t)}{H}dt+\lambda(W- \int_{t=0}^\infty e^{-R(t)}C(t)\frac{L(t)}{H}dt) L=t=0eρtlnC(t)HL(t)dt+λ(Wt=0eR(t)C(t)HL(t)dt)
一阶条件
∂ L ∂ C ( t ) = e − ρ t C ( t ) − 1 L ( t ) H − λ e − R ( t ) L ( t ) H = 0 \frac{\partial \mathcal{L}}{\partial C(t)}=e^{-\rho t} C(t)^{-1}\frac{L(t)}{H}-\lambda e^{-R(t)}\frac{L(t)}{H}=0 C(t)L=eρtC(t)1HL(t)λeR(t)HL(t)=0
上式可得
C ( t ) = e R ( t ) − ρ t λ − 1 C(t)=e^{R(t)-\rho t}\lambda^{-1} C(t)=eR(t)ρtλ1
代入约束式得
∫ t = 0 ∞ e − R ( t ) e R ( t ) − ρ t λ − 1 L ( t ) H d t = W \int _{t=0}^\infty e^{-R(t)}e^{R(t)-\rho t}\lambda^{-1}\frac{L(t)}{H}dt=W t=0eR(t)eR(t)ρtλ1HL(t)dt=W
其中 L ( t ) = e n t L ( 0 ) L(t)=e^{nt}L(0) L(t)=entL(0),则上式为
λ − 1 L ( 0 ) H ∫ t = 0 ∞ e − ( ρ − n ) t d t = W \lambda^{-1}\frac{L(0)}{H}\int _{t=0}^{\infty}e^{-(\rho -n) t}dt =W λ1HL(0)t=0e(ρn)tdt=W
只要 ρ − n > 0 \rho -n>0 ρn>0,则积分项收敛为 1 / ( ρ − n ) 1/(\rho -n) 1/(ρn)

λ − 1 = W L ( 0 ) / H ( ρ − n ) \lambda ^{-1}=\frac{W}{L(0)/H}(\rho -n) λ1=L(0)/HW(ρn)
那么 C ( t ) = e R ( t ) − ρ t W L ( 0 ) / H ( ρ − n ) C(t)=e^{R(t)-\rho t}\frac{W}{L(0)/H}(\rho -n) C(t)=eR(t)ρtL(0)/HW(ρn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值