motion planning术语归纳

本文探讨了机器人运动规划的核心概念,包括运动本原、路径规划、轨迹规划及运动规划,介绍了滚动域控制在未知环境导航的应用,并提及ego-graph在社交网络分析中的基本结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

01 motion primitives

motion primitives:《规划算法》中译为运动本原;
在这里插入图片描述
在k到k+1时刻,所应用的每个行为 uk属于U 都可以认为是一个运动本原。
运动本原实际上就是行为,例如下图中的盘旋,直飞,左转…
在这里插入图片描述

02 motion planning vs path planning vs trajectory planning

path planning:路径规划;给出机器人位置的空间序列X(s),通常有图搜索和采样两种方式获得A->B的最短路径;
trajectory planning:轨迹规划;给出机器人位置的时空序列X(t),在路径基础上添加机器人的运动学、动力学约束,通过mini-snap、closed-form、Beizer curve等添加约束进行优化求解,得到符合机器人约束的最优轨迹;
motion planning:运功规划;由前端路径规划和后端轨迹规划组成;

03 receding horizon control

which is a re-planning framework that we use to handle the navigation task in unknown environments
滚动域控制;也称做MPC(model predictive control)模型预测控制;用于机器人在未知环境中导航;

04 ego-graph

由唯一一个中心节点(ego),以及这个节点的邻居(alters)组成
在这里插入图片描述

待做

fast marching

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值