线性方程组求解

1.矩阵基本知识

(1)正交矩阵相乘仍然是正交矩阵

          A、B是正交矩阵,那么AA'=E BB'=E

         (AB)*(AB)'=AB*B'A'=A(BB')A'=AEA'=AA'=E

(2)一个矩阵乘以正交矩阵,范数不变

         ||Ux||^2=(Ux)^T(Ux)=x^TU^TUx=x^Tx=||x||^2

(3)一个矩阵乘以可逆矩阵秩不变

(4)初等变换只是不影响矩阵的秩,其他的特性都改变了。对于计算矩阵的行列式,不能进行初等变换,但是可以做行列的进             加减,不能乘以系数。

(5)矩阵的迹:矩阵的主对角线上各个元素的总和,是矩阵所有特征值的和

(6)对角矩阵的特征值是其对角线上的各个元素

(7)矩阵的秩等于非零奇异值的个数,等于非零特征值的个数

(8)任意矩阵都能进行奇异值分解,只有方阵才可以进行特征值分解

         特征值分解:

         如果一个向量 v 是方阵 A的特征向量,将可以表示成下面的形式: Av= λv,λ 称为特征向量 v 对应的特征值,并且一个矩           阵的 一组特征向量是一组正交向量。

        特征值分解:Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对角阵,每一个对角线上的元素就是一个特征值

 

       奇异值分解:

      假设A是一个N * M的矩阵,U是一个N * N的方阵(正交矩阵),Σ 是一个N * M的矩阵(对角线上的元素为奇异值),VT是         一个M * M的矩阵(正交矩阵)

        特征值和奇异值的关系:

 

 

 

        (1)U 的列向量,是 AA^T 的特征向量;

         (2)V的列向量,是 A^TA 的特征向量;

          (3)A的奇异值(Σ 的非零对角元素)则是 AA^T 或者 A^TA 的非零特征值的平方根。

(9)秩与自由度( 方阵A(n*n) )

       矩阵的秩,指的是经过初等变换之后的非零行(列)的个数,若不存在零行(列),则为满秩矩阵(Rank(A)=n;关于矩阵         的秩的另一种理解:A矩阵将n维空间中的向量映射到k(k<=n)维空间中,k=Rank(A)

       矩阵(参数矩阵)的自由度,指的是要想求解出矩阵的所有元素至少需要列几个线性方程组。若矩阵本身带有 x 个约束,则         只需要列n*n-x个方程组即可求出所有参数,即矩阵A的自由度为n*n-x。

2.线性方程组求解

       齐次方程:Ax=0

      1. r(A)=未知数个数n(约束较强),该解空间只含有零向量

      2.r(A)<未知数个数n(约束不够),由齐次线性方程组解空间维数 = n - r(A) >0,所以该齐次线性方程组有非零解,而且不唯          一,存在一个基础解系(基础解系中的向量个数为 n - r(A)个)。

        非齐次方程: AX=B
     (1)R(A)< r(A|B),方程组无解 
     (2)r(A)=r(A|B)=n,方程组有唯一解 
     (3)r(A)=r(A|B) < n,方程组有无穷解 
     (4)r(A)>r(A|B),这种情况不存在 
     其中r()代表矩阵的秩,A|B是增广矩阵,n是X未知数个数。

    QR分解

       矩阵的QR分解是指,可以将矩阵A分级成一个正交阵Q和一个上三角矩阵R的乘积。实际中,QR分解经常被用来解线性最小         二乘问题。

       

è¿éåå¾çæè¿°

            对于非方阵的m∗n(m≥n)m∗n(m≥n)阶矩阵A也可能存在QR分解。这时Q为m*m阶的正交矩阵,R为m*n阶上三角矩阵。           这时的QR分解不是完整的(方阵),因此称为约化QR分解(对于列满秩矩阵A必存在约化QR分解)。同时也可以通过扩充矩阵A         为  方阵或者对矩阵R补零,可以得到完全QR分解。

     SVD分解

      奇异值分解:

      假设A是一个N * M的矩阵,U是一个N * N的方阵(正交矩阵),Σ 是一个N * M的矩阵(对角线上的元素为奇异值),VT是        一个M * M的矩阵(正交矩阵)

        特征值和奇异值的关系:

 

 

 

        (1)U 的列向量,是 AA^T 的特征向量;

         (2)V的列向量,是 A^TA 的特征向量;

          (3)A的奇异值(Σ 的非零对角元素)则是 AA^T 或者 A^TA 的非零特征值的平方根。

     SVD分解解满秩(亏秩)最小二乘问题 

    LDLT分解 
      对称矩阵A可以分解成一个下三角矩阵L(Lower下)和一个对角矩阵D(Diagonal对角线)以及一个下三角矩阵L的转置LT三       个矩阵相乘的形式。如下式 

     求解过程:

     Cholesky分解 
       Cholesky分解是LDLT分解的一种特殊形式,也就是其中的D是单位矩阵。正定对称矩阵 A可以分解成一个下三角矩阵L和这        个下三角矩阵L的转置LT相乘的形式。如下式 

      Cholesky分解解满秩最小二乘问题 :

参考:

1.https://zhuanlan.zhihu.com/p/55567702

2. https://blog.csdn.net/wangshuailpp/article/details/80209863

 

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值