GATK RNA-Seq Snps Indel 分析

这是GATK Best Practice系列学习文章中的一篇,本文尝试使用:

Gatk RNA -Seq spns-indels Pipeline 来分析鼻咽癌(NPT)

分析流程如下:

GATK版本的是这样的

在这里插入图片描述

数据

从NCBI上下载转录组数据,访问链接为:

https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP058243&o=acc_s%3Aa

第一个样本的数据下载链接如下:

LocationName Link
NCBIhttps://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos1/sra-pub-run-5/SRR2016932/SRR2016932.1
NCBIhttps://sra-downloadb.st-va.ncbi.nlm.nih.gov/sos2/sra-pub-run-6/SRR2016932/SRR2016932.1
#下载完成后获得文件为SRR2016932.1,需要转换为fastq.gz格式,这里用到NCBI sratookit工具,请自行安装
fastq-dump -gzip --split-3 SRR2016932.1 -O ./
#得到两个fastq.gz文件
SRR2016932_1.fastq.gz
SRR2016932_2.fastq.gz
#我们将文件重命名为以符合习惯
mv SRR2016932_1.fastq.gz SRR2016932_R1.fastq.gz
mv SRR2016932_2.fastq.gz SRR2016932_R2.fastq.gz

用到的分析系统及分析流程文件

名称 (点击下载)备注
SliverWorkspace 2.0.295368提供运行控制平台/社区版
GATK Germline SNP/Indel V1.2分析流程文件,可以一键导入分析平台(点击查看操作) 不想复制shell的,可以使用平台一键导入流程,当然reference文件和软件还需要自己下载和安装
ucsc.hg19.gtf.tar.xzucsc.h19.gtf
ucsc.hg19.gtf.bed 从ucsc.hg19.gtf中列数据中生成的bed文件
ucsc.hg19.gtf.interval_list 使用gatk IntervalToBed工具从ucsc.hg19.gtf.bed转换来的interval文件
分析结果分析结果

流程用到的变量(程序、reference文件和数据库、数值)

变量名变量值类型
snSRR2016932字符
tools.fastqc/opt/FastQC/fastqc程序
tools.STAR/opt/ref/STAR-2.7.3a/bin/Linux_x86_64_static/STAR程序
tools.sambamba/opt/ref/sambamba-0.7.0-linux-static程序
tools.gatk/opt/ref/gatk-4.1.4.1/gatk程序
envis.read_length100 (测序读长)数值
envis.threads32 (并发线程数)数值
envis.scatter10 (HaplotypeCaller并行数)数值
refs.hum/opt/ref/hg19/ucsc.hg19.fa文件
refs.gtf/opt/ref/RNA/ucsc.hg19.gtf文件
refs.bed/opt/ref/RNA/ucsc.hg19.gtf.bed文件
refs.interval/opt/ref/RNA/ucsc.hg19.gtf.interval_list文件
refs.1000G/opt/ref/hg19/1000G_phase1.indels.hg19.vcf文件
refs.mills/opt/ref/hg19/Mills_and_1000G_gold_standard.indels.hg19.vcf文件
refs.dbsnp/opt/ref/hg19/dbsnp_138.hg19.vcf文件

注意:refs文件中的基因组参考序列和gtf文件以及几个vcf文件必须为同一版本,参考序列和相应的GTF文件必须为同一个网站的同一个版本,否则分析过程中会出现各种错误。很多文章推荐使用ensembl的版本,本文使用的是ucsc.hg19版本,因为之前ref文件和参考序列已经有了,只是增加了一个GTF文件,是从ucsc网站生成下载的,链接为:http://genome.ucsc.edu/cgi-bin/hgTables

分析流程:

  • 01 INPUT 输入文件

  • 02 之前用fastqc软件看过,adapter已经去掉了,这里直接开始align,Star Align

    #创建一个变量star_length,值为read_length的值-1.
    let star_length=${envis.read_length}-1
    #如果该star_length前缀的目录不存在,说明没有创建过索引,首先创建索引
    if [ ! -d "/opt/ref/RNA/$star_length-1-pass-index" ]; then
     	mkdir -p /opt/ref/RNA/$star_length-1-pass-index
        ${tools.STAR} --runMode genomeGenerate \
        --runThreadN ${envis.threads} \
        --genomeDir  /opt/ref/RNA/$star_length-1-pass-index \
        --genomeFastaFiles ${refs.hum} \
        --sjdbGTFfile      ${refs.gtf} \
        --sjdbOverhang     $star_length
    fi
    #使用创建的索引,执行align,为了节省空间设置了参数 --outSAMtype BAM Unsorted,也测试过sort类型,不能直接markdup
    ${tools.STAR} \
        --genomeDir   /opt/ref/RNA/$star_length-1-pass-index \
    	--runThreadN  ${envis.threads}  \
        --readFilesIn ${data}/RNA/${sn}_R1.fastq.gz ${data}/RNA/${sn}_R2.fastq.gz \
        --readFilesCommand zcat \
        --sjdbOverhang $star_length \
        --twopassMode Basic \
        --outSAMtype BAM  Unsorted \
        --outFileNamePrefix  ${result}/${sn}.
    
  • 03 Sort Bam:使用了sambamba替换了samtools
    在这里插入图片描述

  • 04-Mark duplicatate:使用了sambamba替换了gatk picard,重命名创建的索引与gatk命名一致。

  • 05 SplitNCigarReads:将落在外显子上的reads分离出来,取出N错误碱基,去除内含子区域的reads。这一步太慢了,占用整个流程一半以上运行时间,不知道有没有办法提高速度。
    在这里插入图片描述

  • 06- 这一步添加sn样本编号等信息,前面sort如果使用samtools因为没有sn信息会报错。

  • 07- BaseRecalibrator 碱基质量校正第一步
    在这里插入图片描述

  • 08- ApplyBQSR 应用碱基校正
    在这里插入图片描述

  • 09- 并行运行HaplotypeCaller
    在这里插入图片描述

    #清理拆分生成的interval文件夹:类似temp_0001_of_10,防止重复运行被上次的结果干扰
    rm    -rf ${result}/${sn}/temp_*
    #创建${sn}目录。
    mkdir -p  ${result}/${sn}
    #使用Gatk IntervalListTools拆分interval,拆分数量为${envis.scatter}
    ${tools.gatk} IntervalListTools \
        --SCATTER_COUNT=${envis.scatter} \
        --SUBDIVISION_MODE=BALANCING_WITHOUT_INTERVAL_SUBDIVISION_WITH_OVERFLOW \
        --UNIQUE=true \
        --SORT=true \
        --INPUT=${refs.interval} \
        --OUTPUT=${result}/${sn}
    #循环遍历生成的interval list文件,运行HaplotypeCaller
    index=1
    for i in `ls ${result}/${sn}/*/scattered.interval_list`;
    do
    	rm -f ${result}/${sn}_$index.vcf
    	${tools.gatk}  HaplotypeCaller \
            -L $i \
            -R ${refs.hum} \
            -I ${result}/${sn}_bqsr.bam \
            -O ${result}/${sn}/${sn}_$index.vcf \
            --dbsnp ${refs.dbsnp} \
            -dont-use-soft-clipped-bases \
            --standard-min-confidence-threshold-for-calling 20 &
        let index+=1
    done
    #等待所有HaplotypeCaller运行结束
    wait
    #用生成的vcf文件名拼接输入字段
    vcfs=
    for z in `ls ${result}/${sn}/${sn}*.vcf`;
    do
        vcfs="-I $z $vcfs"
    done
    echo $vcfs
    #合并生成的vcf文件。
    ${tools.gatk} MergeVcfs \
    	$vcfs \
        -O ${result}/${sn}.vcf
    
  • 10-VariantFiltration:对于RNA-Seq,推荐使用硬过滤,不支持VQSR。

  • 11-顺便使用fastqc看下QC结果:
    在这里插入图片描述

  • 12-最终分析结果:

运行结果

可以看到,GATK的工具一如既往的慢,HaplotypeCaller这一步通过拆分interval并行分析,最后合并vcf,速度从1个小时以上降到了9分钟。剩下的几步,SplitNCigarReads,BaseRecalibrator,ApplyBQSR都非常占用时间。也难怪市面上各种加速方案了。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>