现代控制理论重点难点总结

重点概念

1. 矩阵指数与状态空间方程的解

状态空间方程的解可以用矩阵指数来描述。矩阵指数形如:
x ( t ) = e A ( t − t 0 ) x 0 x\left( t \right) =e^{A\left( t-t_0 \right)}x_0 x(t)=eA(tt0)x0
矩阵指数的展开式为幂级数:
e A t = I + A t + 1 2 ! A 2 t 2 + . . . + 1 k ! A k t k e^{At}=\boldsymbol{I}+\boldsymbol{A}t+\frac{1}{2!}\boldsymbol{A}^2t^2+...+\frac{1}{k!}\boldsymbol{A}^kt^k eAt=I+At+2!1A2t2+...+k!1Aktk
矩阵指数的意义:只要指导了矩阵指数,给定初值和时间,可以求解计算得到所有的状态值。因此矩阵指数描述了状态的转移特征。
矩阵指数的计算方法: 定义法、特征值法、拉普拉斯变换法。
状态转移矩阵也经常写成:
Φ ( t ) = e A t \varPhi \left( t \right) =e^{\boldsymbol{A}t} Φ(t)=eAt
关键应用:
通过对矩阵A进行非奇异变换,予以对角化,从而为求解状态转移矩阵提供了便利。(证明方法:矩阵指数的幂级数定义法)
T − 1 A T = Λ e A t = T [ e λ 1 t . . . e λ 2 t ] T − 1 \boldsymbol{T}^{-1}\boldsymbol{AT}=\boldsymbol{\varLambda } \\ \boldsymbol{e}^{\boldsymbol{A}t}=\boldsymbol{T}\left[ \begin{matrix} e^{\lambda _1t}& & \\ & ...& \\ & & e^{\lambda _2t}\\ \end{matrix} \right] \boldsymbol{T}^{-1} T1AT=ΛeAt=T eλ1t...eλ2t T1
因此该方法时现代控制理论中非常重要的方法,涉及矩阵指数的定义、特征根的计算、特征向量的计算。
例:采用特征值方法计算矩阵指数。
设:
A = [ 0 1 − 2 − 3 ] A=\left[ \begin{matrix} 0& 1\\ -2& -3\\ \end{matrix} \right] A=[0213]
计算如下:
根据: ∣ λ I − A ∣ = 0 得 : ∣ λ − 1 2 λ + 3 ∣ = 0 即: λ ( λ + 3 ) + 2 = 0 得到: λ 1 = − 1 , λ 2 = − 2 当 λ 1 = − 1 , − 2 计算特征向量: [ 0 1 − 2 − 3 ] [ 1 p 1 ] = − 1 [ 1 p 1 ] ⟹ p 1 = − 1 [ 0 1 − 2 − 3 ] [ 1 p 2 ] = − 2 [ 1 p 2 ] ⟹ p 2 = − 2 因此特征向量: T 1 = [ 1 1 − 1 − 2 ] , T 1 − 1 = [ 2 1 − 1 − 1 ] 因此可得矩阵指数为: Φ ( t ) = [ 1 1 − 1 − 2 ] [ e − t 0 0 e − 2 t ] [ 2 1 − 1 − 1 ] Φ ( t ) = [ e − t e − 2 t − e − t − 2 e − 2 t ] [ 2 1 − 1 − 1 ] Φ ( t ) = [ 2 e − t − e − 2 t e − t − e − 2 t − 2 e − t + 2 e − 2 t − e − t + 2 e − 2 t ] 虽然特征向量不同,但是计算得到得状态转移矩阵相同。 \text{根据:}|\lambda I-A|=0 \\ \text{得}:\left| \begin{matrix} \lambda& -1\\ 2& \lambda +3\\ \end{matrix} \right|=0 \\ \text{即:}\lambda \left( \lambda +3 \right) +2=0 \\ \text{得到:}\lambda _1=-1\text{,}\lambda _2=-2 \\ \text{当}\lambda _1=-1\text{,}-2 \text{计算特征向量:} \\ \left[ \begin{matrix} 0& 1\\ -2& -3\\ \end{matrix} \right] \left[ \begin{array}{c} 1\\ p_1\\ \end{array} \right] =-1\left[ \begin{array}{c} 1\\ p_1\\ \end{array} \right] \Longrightarrow p_1=-1 \\ \left[ \begin{matrix} 0& 1\\ -2& -3\\ \end{matrix} \right] \left[ \begin{array}{c} 1\\ p_2\\ \end{array} \right] =-2\left[ \begin{array}{c} 1\\ p_2\\ \end{array} \right] \Longrightarrow p_2=-2 \\ \text{因此特征向量:} \\ T_1=\left[ \begin{matrix} 1& 1\\ -1& -2\\ \end{matrix} \right] \text{,}T_{1}^{-1}=\left[ \begin{matrix} 2& 1\\ -1& -1\\ \end{matrix} \right] \\ \text{因此可得矩阵指数为:} \\ \varPhi \left( t \right) =\left[ \begin{matrix} 1& 1\\ -1& -2\\ \end{matrix} \right] \left[ \begin{matrix} e^{-t}& 0\\ 0& e^{-2t}\\ \end{matrix} \right] \left[ \begin{matrix} 2& 1\\ -1& -1\\ \end{matrix} \right] \\ \varPhi \left( t \right) =\left[ \begin{matrix} e^{-t}& e^{-2t}\\ -e^{-t}& -2e^{-2t}\\ \end{matrix} \right] \left[ \begin{matrix} 2& 1\\ -1& -1\\ \end{matrix} \right] \\ \varPhi \left( t \right) =\left[ \begin{matrix} 2e^{-t}-e^{-2t}& e^{-t}-e^{-2t}\\ -2e^{-t}+2e^{-2t}& -e^{-t}+2e^{-2t}\\ \end{matrix} \right] \\ \text{虽然特征向量不同,但是计算得到得状态转移矩阵相同。} 根据:λIA=0: λ21λ+3 =0即:λ(λ+3)+2=0得到:λ1=1λ2=2λ1=12计算特征向量:[0213][1p1]=1[1p1]p1=1[0213][1p2]=2[1p2]p2=2因此特征向量:T1=[1112]T11=[2111]因此可得矩阵指数为:Φ(t)=[1112][et00e2t][2111]Φ(t)=[etete2t2e2t][2111]Φ(t)=[2ete2t2et+2e2tete2tet+2e2t]虽然特征向量不同,但是计算得到得状态转移矩阵相同。
通过上述例子复习了矩阵特征值、特征向量、矩阵指数的计算。

2. 线性定常非齐次微分方程的解

理论公式: x ( t ) = e A t x ( 0 ) + ∫ 0 t e A ( t − τ ) B u ( τ ) d τ \boldsymbol{x}\left( t \right) =e^{\boldsymbol{A}t}\boldsymbol{x}\left( 0 \right) +\int_0^t{e^{\boldsymbol{A}\left( t-\tau \right)}}\boldsymbol{Bu}\left( \tau \right) d\tau x(t)=eAtx(0)+0teA(tτ)Bu(τ)dτ
以下式为例,练习线性定常非齐次微分方程的解:
x ˙ = [ 0 1 − 2 − 3 ] x + [ 0 1 ] u ,计算状态方程的解 x ( t ) = [ 2 e − t − e − 2 t e − t − e − 2 t − 2 e − t + 2 e − 2 t − e − t + 2 e − 2 t ] x ( 0 ) + ∫ 0 t [ e − ( t − τ ) − e − 2 ( t − τ ) − e − ( t − τ ) + 2 e − 2 ( t − τ ) ] d τ 第一项计算略 , 上式第二项计算: ∫ 0 t [ e − ( t − τ ) − e − 2 ( t − τ ) − e − ( t − τ ) + 2 e − 2 ( t − τ ) ] d τ = [ ∫ 0 t e − ( t − τ ) − e − 2 ( t − τ ) d τ ∫ 0 t − e − ( t − τ ) + 2 e − 2 ( t − τ ) d τ ] = [ 1 2 e − 2 t − e − t + 1 2 e − t − e − 2 t ] \dot{x}=\left[ \begin{matrix} 0& 1\\ -2& -3\\ \end{matrix} \right] x+\left[ \begin{array}{c} 0\\ 1\\ \end{array} \right] u\text{,计算状态方程的解} \\ \boldsymbol{x}\left( t \right) =\left[ \begin{matrix} 2e^{-t}-e^{-2t}& e^{-t}-e^{-2t}\\ -2e^{-t}+2e^{-2t}& -e^{-t}+2e^{-2t}\\ \end{matrix} \right] \boldsymbol{x}\left( 0 \right) +\int_0^t{\left[ \begin{array}{c} e^{-\left( t-\tau \right)}-e^{-2\left( t-\tau \right)}\\ -e^{-\left( t-\tau \right)}+2e^{-2\left( t-\tau \right)}\\ \end{array} \right]}d\tau \\ \text{第一项计算略},\text{上式第二项计算:} \\ \int_0^t{\left[ \begin{array}{c} e^{-\left( t-\tau \right)}-e^{-2\left( t-\tau \right)}\\ -e^{-\left( t-\tau \right)}+2e^{-2\left( t-\tau \right)}\\ \end{array} \right]}d\tau =\left[ \begin{array}{c} \int_0^t{e^{-\left( t-\tau \right)}-e^{-2\left( t-\tau \right)}d\tau}\\ \int_0^t{-e^{-\left( t-\tau \right)}+2e^{-2\left( t-\tau \right)}d\tau}\\ \end{array} \right] =\left[ \begin{array}{c} \frac{1}{2}e^{-2t}-e^{-t}+\frac{1}{2}\\ e^{-t}-e^{-2t}\\ \end{array} \right] x˙=[0213]x+[01]u,计算状态方程的解x(t)=[2ete2t2et+2e2tete2tet+2e2t]x(0)+0t[e(tτ)e2(tτ)e(tτ)+2e2(tτ)]dτ第一项计算略,上式第二项计算:0t[e(tτ)e2(tτ)e(tτ)+2e2(tτ)]dτ=[0te(tτ)e2(tτ)dτ0te(tτ)+2e2(tτ)dτ]=[21e2tet+21ete2t]

3. 能控性和能观性

能控性定义: 如果存在一个分段连续的输入u(t),能在有限时间区间内,时系统由某一个初始状态x(t0),转移到任一终端状态,则称此状态是能控的。若系统的所有状态都是能控的,则称系统为状态完全能控的。
能控性的理解:1. 标量微分方程的理解方式,如果标量微分方程包含输入u(t)项,则该状态受输入控制,否则该状态不受控;2. 在状态平面内,受控状态变量表现为状态子空间的形式;3. 在系统状态框图中,受控状态与输入有所练习;
能控性与什么有关:与系统矩阵的形式有关、与输入的作用点(输入矩阵B)有关。
对角标准型:当系统状态描述为对角标准型时,若输入矩阵有一项为0,则该项对应的状态不受控,表现为,该状态的自由衰减响应,同时不受其他状态变量的影响;
约当标准型:当系统为约当标准型时,系统的状态总是受下一个状态影响,因此只要最后一项状态受输入控制,则所有的状态都可以受控;约当标准型形如:
在这里插入图片描述

第二种判断方法:直接通过AB阵判断

以下的能控性矩阵满秩: M = ( b    A b    A 2 b    A 3 b , . . . , A n − 1 b ) M=\left( b\,\,Ab\,\,A^2b\,\,A^3b,... ,A^{n-1}b \right) M=(bAbA2bA3b,...,An1b)

4. 连续时间线性时不变系统的离散化

参考:线性系统理论(第2版)-郑大钟 p122页;
x ˙ = A x + B u y = C x + D u 表示为离散化形式: { x ( k + 1 ) = G x ( k ) + H u ( k ) y ( k ) = C x ( k ) + D u ( k ) G = e A T H = ( ∫ 0 T e A T d t ) B \dot{x}=Ax+Bu \\ y=Cx+Du \\表示为离散化形式: \begin{cases} x\left( k+1 \right) =Gx\left( k \right) +Hu\left( k \right)\\ y\left( k \right) =Cx\left( k \right) +Du\left( k \right)\\ \end{cases} \\ G=e^{AT} \\ H=\left( \int_0^T{e^{AT}dt} \right) B x˙=Ax+Buy=Cx+Du表示为离散化形式:{x(k+1)=Gx(k)+Hu(k)y(k)=Cx(k)+Du(k)G=eATH=(0TeATdt)B

5. 状态变量分析法

参考:状态变量法及其应用-陈屏
传递函数法,又称端部法。

查漏补缺

  1. 矩阵指数展开为幂级数的证明
  2. 离散时间状态空间方程的求解方法
  3. 线性变换不改变系统的能控性原因
  • 1
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值