各类注意力机制Attention——可变形注意力

本文深入探讨了Attention机制的各种形式,包括稀疏Attention、残差Attention、通道注意力、空间注意力和时间注意力,特别强调在序列类任务中时间注意力的应用,如Transformer解码器中的预测过程,以及可变形注意力的新发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 可变形卷积与注意力机制结合的研究 近年来,可变形卷积(Deformable Convolution)和注意力机制Attention Mechanism)成为计算机视觉领域的重要研究方向之一。两者结合可以显著提升模型在特征提取方面的性能。 #### Pyramid Feature Attention Network for Saliency Detection 一种典型的结合方法可以在《Pyramid Feature Attention Network for Saliency Detection》中找到[^1]。该论文提出了金字塔特征注意网络(PFAN),通过引入空间注意力机制来增强不同尺度下的特征表示能力。具体而言,PFAN利用了多级特征图的空间关系,并结合可变形卷积调整采样位置的能力,从而实现更精确的目标检测和分割效果。 #### Generative Hierarchical Features from Synthesizing Image 另一篇相关工作来自《Generative Hierarchical Features from Synthesizing Image》,其中讨论了如何生成分层特征并将其应用于图像合成任务[^2]。虽然这篇论文的主要关注点并非完全针对可变形卷积,但它展示了如何将自适应权重分配给不同的感受野区域,这实际上是一种形式化的注意力应用方式。这种技术能够进一步扩展到其他场景,比如目标跟踪或语义理解等领域。 以下是基于上述两篇文章以及其他背景知识总结的一些关键概念: - **动态感知域调节**:可变形卷积允许滤波器根据输入数据自动学习偏移量,这意味着它可以灵活改变其接受范围而无需固定网格布局。 - **全局上下文建模**:通过加入通道间依赖性和跨位置交互作用,注意力模块帮助捕捉长期关联性以及局部细节信息之间的联系。 下面给出一段简单的伪代码用于说明如何在一个标准 CNN 架构上集成这两种组件: ```python import torch.nn as nn class DeformAttnConvBlock(nn.Module): def __init__(self, in_channels, out_channels): super(DeformAttnConvBlock, self).__init__() # 定义常规卷积层作为初始处理单元 self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) # 添加可变形卷积操作以增加灵活性 self.deform_conv = ModulatedDeformConvPack(out_channels, out_channels, kernel_size=(3, 3), stride=1, padding=1, dilation=1, deformable_groups=1) # 使用SENet风格的挤压激励结构构建注意力子网路 reduction_ratio = 8 mid_chs = max(out_channels // reduction_ratio, 4) self.attn_fc1 = nn.Linear(out_channels, mid_chs) self.relu = nn.ReLU(inplace=True) self.attn_fc2 = nn.Linear(mid_chs, out_channels) self.sigmoid = nn.Sigmoid() def forward(self, x): identity = x # 经过普通卷积预处理后的张量 feat = self.conv(x) # 应用可变形卷积获取更具表现力的特征映射 offset_mask = ... # 计算得到offset mask的具体逻辑省略 feat_deformed = self.deform_conv(feat, offset_mask) # 实现通道维度上的注意力计算流程 b, c, _, _ = feat_deformed.size() avg_pool = nn.AdaptiveAvgPool2d((1))(feat_deformed).view(b,c) fc_out_1 = self.relu(self.attn_fc1(avg_pool)) fc_out_2 = self.sigmoid(self.attn_fc2(fc_out_1)).unsqueeze(-1).unsqueeze(-1) weighted_feat = feat_deformed * fc_out_2.expand_as(feat_deformed) output = identity + weighted_feat return output ``` 此代码片段定义了一个融合了可变形卷积与注意力机制的基础构件——`DeformAttnConvBlock`类实例对象会接收任意大小批次的数据向量序列并通过一系列变换最终返回经过优化改进的新版本表达结果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值