去年期末了才开始整理控制工程的学习比较,比较幸苦,现在就按照上课的进度来整理了。参考的教材是《机械工程测试技术基础》第三版,熊诗波,黄长艺主编。参考的网课可以从这里访问。
会以一个相对应试的角度整理知识点。不会过多地注重数学上的证明。如果发现有谬误的话,欢迎评论或者私信和我交流。
Überblick
第1章 信号及其描述
1. 信号的分类与描述
1.1 信号的分类
1.1.1 确定性信号与随机信号
这张图比较好地概括了各种信号之间的关系:
顾名思义的就不说了。一些没听说过的举例说明。
准周期信号:
x
(
t
)
=
sin
t
+
sin
2
t
x(t)=\sin t + \sin \sqrt 2 t
x(t)=sint+sin2t这个虽然画出来看起来很周期。但是由于
1
1
1和
2
\sqrt 2
2没有一个有理的公约数,所以也找不到公共周期。他就并不是一个符合定义的周期信号。
平稳随机信号:一个例子是白噪声。它的统计特征量是时不变的。再下面的现在先不展开讲了。
1.1.2 连续信号和离散信号
或者也可以这么分类。
1.1.3 能量信号和功率信号
对于一个信号
x
(
t
)
x(t)
x(t),如果它满足:
∫
−
∞
∞
x
2
(
t
)
d
t
<
∞
\int^\infty_{-\infty} x^2(t)\mathrm{d}t<\infty
∫−∞∞x2(t)dt<∞
也就是在实数范围内积分的值是有限的,那我们我们就认为这个信号的能量是有限的,并称之为能量有限信号,简称能量信号。比如我们之前在控制工程中学过的单位脉冲信号
δ
(
t
)
\delta (t)
δ(t)。
如果一个信号,虽然它的
∫
−
∞
∞
x
2
(
t
)
d
t
→
∞
\int^\infty_{-\infty} x^2(t)\mathrm{d}t\to\infty
∫−∞∞x2(t)dt→∞但是它满足:
1
t
2
−
t
1
∫
−
∞
∞
x
2
(
t
)
d
t
<
∞
{1\over t_2- t_1}\int^\infty_{-\infty}x^2(t)\mathrm{d}t<\infty
t2−t11∫−∞∞x2(t)dt<∞
则我们称这个信号为功率有限信号,或功率信号。
1.2 信号的时域描述和频域描述
这里简单地说一下,一会儿傅里叶级数,傅里叶变换再展开。
时域描述就是我们直接观察或记录到地信号,一般以时间为独立变量,反映了信号幅值随时间地变换关系。
对于频域描述,我们需要利用一些数学工具对之进行转换。以频率为独立变量,以此来反映信号的频率结构和各频率成分与幅值、相位之间的关系。
2. 周期信号与离散频谱
2.1 傅里叶级数的三角函数展开形式
我们来回顾一下高等数学的知识:
我们可以把一个函数展开成如下形式:
x ( t ) = a 0 + ∑ n = 1 ∞ ( a n cos n ω 0 t + b n sin n ω 0 t ) x(t) = a_0 + \sum^\infty_{n=1} \left( a_n \cos n\omega_0 t+ b_n \sin n\omega_0 t \right) x(t)=a0+n=1∑∞(ancosnω0t+bnsinnω0t)
其中:
a 0 = 1 T 0 ∫ − T 0 2 T 0 2 x ( t ) d t a n = 2 T 0 ∫ − T 0 2 T 0 2 x ( t ) cos n ω 0 t d t b n = 2 T 0 ∫ − T 0 2 T 0 2 x ( t ) sin n ω 0 t d t (2-1) \begin{aligned} a_0 &= {1\over T_0} \int^{T_0\over 2}_{-{T_0\over 2}} x(t) \mathrm{d} t \\a_n &={2\over T_0} \int^{T_0\over 2}_{-{T_0\over 2}}x(t)\cos n \omega_0 t \mathrm{d} t \\ b_n & = {2\over T_0} \int^{T_0\over 2}_{-{T_0\over 2}}x(t)\sin n \omega_0 t \mathrm{d} t \end{aligned} \tag{2-1} a0anbn=T01∫−2T02T0x(t)dt=T02∫−2T02T0x(t)cosnω0tdt=T02∫−2T02T0x(t)sinnω0tdt(2-1)
虽然老师多次要求我们把这个背出来。但我没想明白这玩意儿咋考。拉氏变换表背完不可以嘛?
2.2 傅里叶级数的复指数展开式
根据众所周知,学一次忘一次,每年开学都要重新回忆的欧拉公式:
e
±
j
ω
t
=
cos
ω
t
±
j
sin
ω
t
\mathrm{e}^{\pm \mathrm{j} \omega t} = \cos \omega t \pm\mathrm{j}\sin \omega t
e±jωt=cosωt±jsinωt
我们可以把之前的式2-1进行变换。首先:
cos
n
ω
0
t
=
1
2
(
e
−
j
n
ω
0
t
+
e
j
n
ω
0
t
)
sin
n
ω
0
t
=
j
1
2
(
e
−
j
n
ω
0
t
−
e
j
n
ω
0
t
)
\cos n \omega_0 t ={1\over 2} \left( \mathrm{e}^{-\mathrm{j}n\omega_0t}+{e}^{\mathrm{j}n\omega_0t} \right) \\ \sin n \omega_0 t =\mathrm{j}{1\over 2} \left( \mathrm{e}^{-\mathrm{j}n\omega_0t}-{e}^{\mathrm{j}n\omega_0t} \right)
cosnω0t=21(e−jnω0t+ejnω0t)sinnω0t=j21(e−jnω0t−ejnω0t)
进一步,代入式2-1的第一行中:
x
(
t
)
=
a
0
+
∑
n
=
1
∞
[
1
2
(
a
n
+
j
b
n
)
e
−
j
n
ω
0
t
+
1
2
(
a
n
−
j
b
n
)
e
j
n
ω
0
t
]
(2-2)
x(t) = a_0 + \sum^\infty_{n = 1} \left[ {1\over 2} \left( a_n + \mathrm{j} b_n \right)\mathrm{e}^{-\mathrm{j}n\omega_0t} + {1\over 2} \left( a_n - \mathrm{j} b_n \right)\mathrm{e}^{\mathrm{j}n\omega_0t} \right] \tag{2-2}
x(t)=a0+n=1∑∞[21(an+jbn)e−jnω0t+21(an−jbn)ejnω0t](2-2)
如果我们令
c
n
=
1
2
(
a
n
−
j
b
n
)
c_n = {1\over 2}(a_n-\mathrm{j}b_n)
cn=21(an−jbn)
考虑到
a
n
a_n
an和
b
n
b_n
bn的奇偶性,有:
c
−
n
=
1
2
(
a
n
+
j
b
n
)
c_{-n} = {1\over 2}(a_n+\mathrm{j}b_n)
c−n=21(an+jbn)
由此这个式2-2就可以变成:
x
(
t
)
=
c
0
+
∑
n
=
1
∞
[
c
−
n
e
−
j
n
ω
0
t
+
c
n
e
j
n
ω
0
t
]
=
∑
n
=
−
∞
∞
c
n
e
j
n
ω
0
t
(2-3)
\begin{aligned} x(t) &= c_0 + \sum^\infty_{n = 1} \left[ c_{-n} \mathrm{e}^{-\mathrm{j}n\omega_0t} + c_n \mathrm{e}^{\mathrm{j}n\omega_0t} \right] \\& = \sum^\infty_{n = -\infty} c_n \mathrm{e}^{\mathrm{j}n\omega_0t} \end{aligned} \tag{2-3}
x(t)=c0+n=1∑∞[c−ne−jnω0t+cnejnω0t]=n=−∞∑∞cnejnω0t(2-3)
而这里的
c
n
c_n
cn有:
c
n
=
1
2
(
a
n
−
j
b
n
)
=
1
2
2
T
0
∫
−
T
0
2
T
0
2
(
cos
n
ω
0
t
−
j
sin
n
ω
0
t
)
d
t
=
1
T
0
∫
−
T
0
2
T
0
2
x
(
t
)
e
−
j
n
ω
0
t
d
t
(2-4)
\begin{aligned} c_n & = {1\over 2} (a_n -\mathrm{j}b_n) \\ & = {1\over 2}{2\over T_0}\int^{T_0\over 2}_{-{T_0\over 2}}(\cos n \omega_0 t - \mathrm{j}\sin n \omega_0 t) \mathrm{d} t \\& = {1\over T_0}\int^{T_0\over 2}_{-{T_0\over 2}}x(t)\mathrm{e}^{\mathrm{-j}n\omega_0 t}\mathrm{d}t \end{aligned}\tag{2-4}
cn=21(an−jbn)=21T02∫−2T02T0(cosnω0t−jsinnω0t)dt=T01∫−2T02T0x(t)e−jnω0tdt(2-4)
那其实有式2-3我们不难发现,一般周期函数的傅里叶级数的复指数函数形式展开后,其实频谱总是偶对称的,其虚频谱总是奇对称的。(实频谱是cos项,虚频谱是sin项,很好理解)
此外,周期函数的频谱具有三个特点:
- 周期信号的频谱是离散的。
- 每条谱线只出现在基波频率的整数倍上,基波频率是诸分量频率的公约数。
- 各频率分量的谱线高度表示该谐波的幅值或相位角。在工程中的周期信号,谐波幅值总的趋势是随着谐波次数的增高而减小的。因此我们在分析的时候,频率计算的取值适可而止。
我觉得第一条和第二条可以结合之前提到的准周期信号来理解。想象一下,如果一个函数的谱线是连续的,那最小公约数那就没法取了。
这三条概括起来就是:离散型,谐波性,收敛性。
2.3 周期信号的强度表述
峰值:
x
p
=
∣
x
(
t
)
∣
m
a
x
x_p = |x(t)|_{max}
xp=∣x(t)∣max
均值:
μ
x
=
1
T
0
∫
0
T
0
x
(
t
)
d
t
\mu_x = {1\over T_0}\int^{T_0}_0 x(t) \mathrm{d} t
μx=T01∫0T0x(t)dt
绝对均值:
μ
∣
x
∣
=
1
T
0
∫
0
T
0
∣
x
(
t
)
∣
d
t
\mu_{|x|} = {1\over T_0}\int^{T_0}_0 |x(t)| \mathrm{d} t
μ∣x∣=T01∫0T0∣x(t)∣dt
绝对均值相当于先对原来的信号进行全波整流的处理,然后再求取均值。
有效值:
x
m
s
=
1
T
0
∫
0
T
0
x
2
(
t
)
d
t
x_{ms} = \sqrt{{1\over T_0}\int^{T_0}_0 x^2(t)\mathrm{d}t}
xms=T01∫0T0x2(t)dt
有效值相当于信号的均方根值。
平均功率:
P
a
v
=
1
T
0
∫
0
T
0
x
2
(
t
)
d
t
P_{av} = {1\over T_0}\int^{T_0} _ 0 x^2(t)\mathrm{d}t
Pav=T01∫0T0x2(t)dt
3. 瞬变非周期信号与连续频谱
3.1 傅里叶变换
我们如果把之前得出的2-4代入到2-3之中,我们不难得出:
x
(
t
)
=
∑
n
=
−
∞
∞
(
1
T
0
∫
−
T
0
2
T
0
2
e
−
j
n
ω
0
t
d
t
)
e
j
n
ω
0
t
(3-1)
x(t) = \sum^\infty_{n = -\infty} \left( {1\over T_0} \int ^ {T_0\over 2 }_{-{T_0\over 2}}\mathrm{e}^{\mathrm{-j}n\omega_0 t}\mathrm{d}t \right) \mathrm{e}^{\mathrm{j}n\omega_0 t} \tag{3-1}
x(t)=n=−∞∑∞(T01∫−2T02T0e−jnω0tdt)ejnω0t(3-1)
我们如果在这个情况下让
T
0
→
∞
T_0\to \infty
T0→∞,我们就可以化求和符号为积分符号。由于有
T
0
=
2
π
/
ω
0
T_0 = 2 \pi / \omega_0
T0=2π/ω0。这个时候
ω
0
→
0
\omega_0\to 0
ω0→0,
n
ω
0
n\omega_0
nω0就变成了一个连续量,我们让
n
ω
0
=
ω
n\omega_0 = \omega
nω0=ω,则
ω
0
=
d
ω
\omega_0 = \mathrm{d}\omega
ω0=dω。
那么在这种情况下,式2-5就可以被转化为:
x
(
t
)
=
∫
−
∞
∞
d
ω
2
π
∫
−
∞
∞
e
−
j
ω
t
d
t
e
j
ω
t
=
∫
−
∞
∞
(
1
2
π
∫
−
∞
∞
e
−
j
ω
t
d
t
)
e
j
ω
t
d
ω
(3-2)
\begin{aligned} x(t) &= \int^\infty_{-\infty}{\mathrm{d}\omega\over 2\pi}\int^\infty_{-\infty}\mathrm{e}^{-\mathrm{j}\omega t}\mathrm{d} t \mathrm{e}^{\mathrm{j}\omega t} \\ &=\int^\infty_{-\infty} \left( {1\over 2\pi} \int^\infty_{-\infty}\mathrm{e}^{-\mathrm{j}\omega t}\mathrm{d} t \right) \mathrm{e}^{\mathrm{j}\omega t} \mathrm{d}\omega \end{aligned}\tag{3-2}
x(t)=∫−∞∞2πdω∫−∞∞e−jωtdtejωt=∫−∞∞(2π1∫−∞∞e−jωtdt)ejωtdω(3-2)
一解我多年来的疑惑啊。
我们规定:
X
(
ω
)
=
1
2
π
∫
−
∞
∞
e
−
j
ω
t
d
t
(3-3)
X(\omega) = {1\over 2\pi} \int^\infty_{-\infty}\mathrm{e}^{-\mathrm{j}\omega t}\mathrm{d} t \tag{3-3}
X(ω)=2π1∫−∞∞e−jωtdt(3-3)
以及
x
(
t
)
=
∫
−
∞
∞
X
(
ω
)
e
j
ω
t
d
ω
(3-4)
x(t) = \int^\infty_{-\infty} X(\omega) \mathrm{e}^{\mathrm{j}\omega t} \mathrm{d}\omega \tag{3-4}
x(t)=∫−∞∞X(ω)ejωtdω(3-4)
式3-3表达了
X
(
ω
)
X(\omega)
X(ω)为
x
(
t
)
x(t)
x(t)的傅里叶变换。(FT, Fourier Transfer)
式3-4表达了
x
(
t
)
x(t)
x(t)为
X
(
ω
)
X(\omega)
X(ω)的傅里叶逆变换。(IFT, Inverse Fourier Transfer)
如果我们改用我们在工程上应用较多的频率的话:
有
ω
=
2
π
f
\omega = 2\pi f
ω=2πf,则:
1
2
π
∫
−
∞
∞
e
−
j
ω
t
d
t
=
1
2
π
∫
−
∞
∞
e
−
j
2
π
f
t
d
t
{1\over 2\pi} \int^\infty_{-\infty}\mathrm{e}^{-\mathrm{j}\omega t}\mathrm{d} t = {1\over 2\pi} \int^\infty_{-\infty}\mathrm{e}^{-\mathrm{j}2\pi f t}\mathrm{d} t
2π1∫−∞∞e−jωtdt=2π1∫−∞∞e−j2πftdt
令
2
π
t
=
τ
2\pi t = \tau
2πt=τ,代入其中:
1
2
π
∫
−
∞
∞
e
−
j
ω
t
d
t
=
1
2
π
1
2
π
∫
−
∞
∞
e
−
j
f
τ
d
τ
=
1
2
π
X
′
(
f
)
{1\over 2\pi} \int^\infty_{-\infty}\mathrm{e}^{-\mathrm{j}\omega t}\mathrm{d} t ={1\over 2\pi}{1\over 2\pi}\int^\infty_{-\infty}\mathrm{e}^{-\mathrm{j}f \tau}\mathrm{d} \tau ={1\over 2\pi} X'(f)
2π1∫−∞∞e−jωtdt=2π12π1∫−∞∞e−jfτdτ=2π1X′(f)
为了避免啰嗦,我们索性直接把
X
(
f
)
=
2
π
X
(
ω
)
X(f) = 2\pi X(\omega)
X(f)=2πX(ω)
由此我们就可以得到:
X
(
f
)
=
∫
−
∞
∞
x
(
t
)
e
−
j
2
π
f
t
d
t
x
(
t
)
=
∫
−
∞
∞
X
(
f
)
e
j
2
π
f
t
d
f
(3-5)
\begin{aligned} X(f) & = \int^\infty_{-\infty}x(t)\mathrm{e}^{-\mathrm{j}2\pi f t}\mathrm{d} t \\ x(t) & = \int^\infty_{-\infty}X(f)\mathrm{e}^{\mathrm{j}2\pi f t}\mathrm{d} f \end{aligned} \tag{3-5}
X(f)x(t)=∫−∞∞x(t)e−j2πftdt=∫−∞∞X(f)ej2πftdf(3-5)
类似于控制工程当中频率特性的幅频特性和相频特性,这里有:频率的连续值谱
∣
X
(
f
)
∣
|X(f)|
∣X(f)∣和连续相位谱
ϕ
(
f
)
\phi(f)
ϕ(f)。
3-5非常重要。
后面的一道例题里面介绍了一种函数和他的傅里叶变换。
对于函数:
w
(
t
)
=
{
1
∣
t
∣
<
T
2
0
∣
t
∣
>
T
2
(3-6)
w(t)= \begin{cases} 1 & |t|<{T\over 2} \\ 0 & |t|>{T\over 2} \end{cases} \tag{3-6}
w(t)={10∣t∣<2T∣t∣>2T(3-6)
我们称3-6表示的函数为矩形窗函数。它的频谱为:
W
(
f
)
=
T
sin
π
f
T
π
f
T
=
T
s
i
n
c
(
π
f
T
)
W(f) = T{\sin \pi f T\over\pi f T} = T \mathrm{sinc}(\pi f T)
W(f)=TπfTsinπfT=Tsinc(πfT)
注意,这里我们定义了一个新的函数:
s
i
n
c
θ
:
=
sin
θ
θ
\mathrm{sinc}\theta:={\sin \theta \over \theta}
sincθ:=θsinθ
我们称这个函数为采样函数。
3.2 傅里叶变换的主要性质
我觉得这里可以参考之前控工的拉氏变换的性质。
但我还是整理一下:
注意,下面表格讨论的所有内容的一个前提都是有一个傅里叶变换对
x
(
t
)
x(t)
x(t)和
X
(
f
)
X(f)
X(f)
3.2.1 函数的奇偶虚实性
时域 | 频域 |
---|---|
实偶函数 | 实偶函数 |
实奇函数 | 虚奇函数 |
虚偶函数 | 虚偶函数 |
虚奇函数 | 实奇函数 |
其实就是,总结一下,不管原来是奇函数函数偶函数,傅里叶变换以后保持性质不变。对于偶函数而言,虚实性也保持不变。但奇函数则会对虚实性进行一个翻转。
3.2.2 线性叠加
3.2.3 对称
X ( t ) → x ( − f ) X(t)\to x(-f) X(t)→x(−f)
3.2.4 尺度改变
x
(
k
t
)
→
1
k
X
(
f
k
)
x(kt)\to{1\over k}X \left( {f\over k} \right)
x(kt)→k1X(kf)
如果我们在时域上压缩一个信号的话,那么它在频域上频带加宽,幅值降低。
3.2.5 时移
x
(
t
±
t
0
)
→
X
(
f
)
e
±
j
2
π
f
t
0
x(t\pm t_0) \to X(f)\mathrm{e}^{\pm\mathrm{j}2\pi f t_0}
x(t±t0)→X(f)e±j2πft0
符号是一样的。
3.2.6 频移
x ( t ) e ∓ j 2 π f t 0 → X ( f ± f 0 ) x(t)\mathrm{e}^{\mp\mathrm{j}2\pi f t_0} \to X(f\pm f_0) x(t)e∓j2πft0→X(f±f0)
3.2.7 翻转
x ( − t ) → X ( − f ) x(-t)\to X(-f) x(−t)→X(−f)
3.2.8 共轭
x
∗
(
t
)
→
X
∗
(
−
f
)
x^*(t)\to X^*(-f)
x∗(t)→X∗(−f)
这边的共轭我的理解应该就是复数的共轭了。为啥我也不知道,姑且记住吧,书上也没说,爱谁谁。
3.2.9 卷积
在某个域卷积之后到了另外一个域就是乘积。这个和拉氏变换时完全一样的,不说了。
3.2.10 微分
d n x ( t ) d t n → ( j 2 π f ) n X ( f ) ( − j 2 π t ) n x ( t ) → d n X ( f ) d f n { \mathrm{d}^n x(t) \over \mathrm{d}t^n } \to (\mathrm{j}2\pi f)^n X(f) \\ (-\mathrm{j}2\pi t)^n x(t)\to { \mathrm{d}^n X(f) \over \mathrm{d}f^n } dtndnx(t)→(j2πf)nX(f)(−j2πt)nx(t)→dfndnX(f)
3.2.11 积分
∫ − ∞ t x ( t ) d t → 1 j 2 π f X ( f ) \int ^t_{-\infty}x(t)\mathrm{d}t \to {1\over \mathrm{j}2\pi f}X(f) ∫−∞tx(t)dt→j2πf1X(f)
3.3 几种典型信号的频谱
提一个采样性质的概念。我们如果让一个
δ
(
t
)
\delta(t)
δ(t)和任一连续函数
f
(
t
)
f(t)
f(t)相乘时,它的乘积仅在
t
=
0
t=0
t=0处存在。这个地方是一个强度为
f
(
0
)
f(0)
f(0)的
δ
\delta
δ函数。我们要是对之进行一个积分:
∫
−
∞
∞
f
(
t
)
δ
(
t
)
d
t
=
f
(
0
)
\int ^{\infty}_{-\infty} f(t) \delta(t) \mathrm{d} t = f(0)
∫−∞∞f(t)δ(t)dt=f(0)
要是对于任意时刻
t
0
t_0
t0而言,类似地:
∫
−
∞
∞
f
(
t
)
δ
(
t
−
t
0
)
d
t
=
f
(
t
0
)
\int ^{\infty}_{-\infty} f(t) \delta(t-t_0) \mathrm{d} t = f(t_0)
∫−∞∞f(t)δ(t−t0)dt=f(t0)
这样一来,我们就可以对函数进行采样了。
关注一下三角函数的频谱。很奇怪的是,这边尝试用拉普拉斯变换套过去好像不太行。但是无论如何先记录一下结论吧。推导过程其实不难。用
δ
(
t
)
\delta(t)
δ(t)来进行替换然后计算就好了。
sin
2
π
f
0
t
→
j
1
2
[
δ
(
f
+
f
0
)
−
δ
(
f
−
f
0
)
]
cos
2
π
f
0
t
→
1
2
[
δ
(
f
+
f
0
)
+
δ
(
f
−
f
0
)
]
\sin 2 \pi f_0 t \to \mathrm{j} {1\over 2}[\delta(f+f_0)-\delta(f-f_0)] \\ \cos 2 \pi f_0 t \to {1\over 2}[\delta(f+f_0)+\delta(f-f_0)]
sin2πf0t→j21[δ(f+f0)−δ(f−f0)]cos2πf0t→21[δ(f+f0)+δ(f−f0)]