Mistral AI 团队发布 Mistral-7B-Instruct-v0.3

抱抱脸上线了 Mistral-7B-v0.3 的基础版和指令微调版。

相比于Mistral-7B-v0.2,新版本更新如下:

– 词汇量从 32000 扩展到 32768
– 支持 v3 分词器
– 支持函数调用

Mistral-7B-v0.3:网页链接
Mistral-7B-Instruct-v0.3:网页链接 ​​​


从Hugging Face安装

pip install mistral_inference

从Hugging Face下载

from huggingface_hub import snapshot_download
from pathlib import Path

mistral_models_path = Path.home().joinpath('mistral_models', '7B-Instruct-v0.3')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/Mistral-7B-Instruct-v0.3", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)

Mistral-7B-Instruct-v0.3 模型的性能评估表明,与早期版本相比,该模型有重大改进。该模型已显示出根据用户指令生成连贯且适合上下文的文本的非凡能力。Mistral-7B-Instruct-v0.3 模型在实际测试中优于以前的模型,突出了其处理复杂语言任务的增强能力。例如,该模型可以高效管理多达 72.5 亿个参数,确保高细节和输出精度。但是,需要注意的是,此模型目前缺乏审核机制,这对于在需要审核输出以避免不适当或有害内容的环境中进行部署至关重要。

总之,Mistral-7B-Instruct-v0.3 模型解决了语言理解和生成的挑战;研究人员通过一系列战略改进增强了模型的功能。其中包括扩展词汇表、改进的分词器支持以及创新引入函数调用。Mistral-7B-Instruct-v0.3 模型展示了令人鼓舞的结果,强调了它对各种人工智能驱动应用程序的潜在影响。持续发展和社区参与对于进一步完善这一模式至关重要,特别是在实施必要的安全部署审核机制方面。

### 关于 Mistral-Large-Instruct-2407-AWQ 的详细介绍 #### 模型概述 Mistral-Large-Instruct-2407-AWQ 是一款基于量化技术优化的大规模预训练语言模型,旨在降低运行成本并提高推理效率。该版本采用了 AWQ (Activation-aware Weight Quantization) 技术,在保持较高精度的同时显著减少了计算资源需求[^1]。 #### 获取文档与下载链接 为了方便开发者获取最新资料,建议访问官方发布的教程页面以及魔搭社区中的 Hugging Face 镜像站点来查找详细的安装指南和技术文档。这些平台通常会提供最全面的说明和支持材料[^3]。 ```bash # 访问HuggingFace镜像站获取更多详情 https://hf-mirror.com/ ``` #### 使用方法简介 对于希望快速上手此模型的应用场景而言,可以通过 OpenWebUI 工具实现一键部署功能。这使得即使是不具备深厚技术背景的人也能轻松完成配置工作。具体操作流程可参照相关视频教程了解每一步骤的具体实施细节[^2]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "mistral-large-instruct-2407-awq" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) input_text = "<|user|>\nWhat is the capital of France?<|end|>" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值