在人工智能技术飞速发展的今天,机器对空间的理解和认知能力正逐渐成为研究的热点。SpatialLM作为一种创新的三维大型语言模型,正在这一领域掀起一场革命。本文将带你深入了解SpatialLM的核心技术、应用场景及其对未来的深远影响。
一、SpatialLM:空间理解的革新者
SpatialLM是由ManyCore Research Team开发的一款专为三维空间理解设计的大型语言模型。它能够处理来自多种数据源的三维点云数据,包括单目视频序列、RGBD图像以及LiDAR传感器等。与传统的三维数据处理方法不同,SpatialLM无需依赖昂贵的专用设备,即可将无结构的三维几何数据转化为结构化的三维表示,为机器赋予了强大的空间认知和推理能力。
二、技术解构:从视频到 “数字孪生” 的进化之路
SpatialLM 的核心突破在于构建了 “视频输入 - 空间解析 - 结构化输出” 的完整链路:
- 多模态数据融合
区别于依赖激光雷达或定制穿戴设备的传统方案,SpatialLM 采用MASt3R-SLAM 技术,将手机 / 相机拍摄的 RGB 视频拆解为千万帧图像,通过特征点匹配与深度计算,生成高密度 3D 点云模型。这一过程如同人类通过双眼视差构建立体视觉,却能在普通消费级设备上实现。 - 空间语义解析
模型通过点云编码器将离散的点云数据转化为紧凑特征向量,再借助大语言模型生成场景脚本语言。这些代码不仅包含墙体、门窗等空间结构的坐标尺寸,还标注了物体的语义边界框(如 “沙发 - 长 1.8 米 - 距墙 0.5 米”),最终通过可视化工具还原为可交互的 3D 场景。 - 物理规则嵌入
依托群核科技十余年积累的 10 亿级 3D 空间数据库,SpatialLM 内置了 “家具不能悬空”“通道宽度≥0.8 米” 等物理常识。相比 Meta 需定制硬件的 SceneScript 模型,SpatialLM 的输出不仅是几何描述,更是包含物理约束的可执行指令集。
三、闭环生态:从 “看懂” 到 “会做” 的智能跃迁
SpatialLM 的价值不仅在于 “认知”,更在于其与群核空间智能平台 SpatialVerse 形成的 “现实 - 虚拟 - 现实” 闭环:
- 现实场景数字化:一段厨房视频经 SpatialLM 处理后,生成包含冰箱、橱柜等物体空间关系的结构化场景;
- 虚拟场景泛化:SpatialVerse 的合成数据引擎基于该场景,可衍生出千万种变体(如不同橱柜布局、电器位置);
- 虚实交互训练:机器人在虚拟 “数字道场” 中反复练习开关冰箱、躲避障碍物,再将经验迁移到真实环境。
这种模式将机器人训练成本降低 90% 以上。以叠被子场景为例,传统方案需为每种床型单独建模,而 SpatialLM+SpatialVerse 可通过虚拟场景穷举床品形态、摆放位置等变量,让机器人在仿真环境中完成 “题海训练”。
四、未来图景:空间智能如何重塑 AI 时代
随着 SpatialLM 的开源与迭代,三个变革方向逐渐清晰:
- 机器人 “平民化”:通用空间模型让服务机器人、家庭助手快速适配复杂环境,中金预测 2030 年中国人形机器人市场规模将达 581 亿元;
- 虚实融合新范式:在 AR/VR 领域,SpatialLM 可实时构建物理正确的虚拟空间,助力元宇宙场景落地;
- 工业场景智能化:工厂物流机器人通过空间推理优化路径规划,智能制造产线实现动态布局调整。
从谷歌在论文中致谢群核科技的 3D 场景数据,到 SpatialLM 引发的开源浪潮,这家杭州企业正在用空间智能技术改写 AI 的进化路径。当机器不仅能理解 “是什么”,还能推理 “为什么” 和 “如何做” 时,具身智能的奇点或许已不再遥远 —— 正如群核科技董事长黄晓煌所言:“我们正在搭建的,是数字世界与物理世界之间的桥梁。” 而 SpatialLM,正是这架桥梁的第一块基石。
https://github.com/manycore-research/SpatialLM
https://huggingface.co/manycore-research/SpatialLM-Llama-1B
https://huggingface.co/manycore-research/SpatialLM-Qwen-0.5B