毫米波雷达难点和工程经验教训

本文探讨了车载毫米波雷达在算法和工程实施中遇到的挑战,包括角精度不足、通道一致性问题、强反射物影响、跟踪目标模型失效、算法响应慢、点云稀疏和4D雷达技术的局限。并分享了项目经验,如针对AWR1843芯片的优化措施,以及处理虚假点迹、动态多帧起始、传感器融合等问题的方法,以提高雷达系统的性能和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 难点

        虽然现在车载毫米波雷达已经大规模量产,但仍存在一些问题,列举如下:

        1.角精度明显低于理论值,低于暗室测量值;角精度影响目标跟踪的精度,对于某些场景的边界告警响应偏慢。

        2.通道一致性较差,不能保证射频通道一致性,就无法保证检测点云的一致性,也就无法保证跟踪目标的一致性。

        3.强反射物对检测的影响很大,难以在强反射物(大卡车等)附近检测出弱小目标(行人)。

        4.跟踪目标模型失效,一般而言跟踪算法是建立在假设的运动模型和环境噪声条件下的,如果目标机动性高,或环境噪声未被模型覆盖,则跟踪精度降低,严重会出现目标丢失。多模型匹配和切换是一种可行的方法,但也存在响应不及时的问题。

        5.算法运行时间长,系统响应慢。为了得到理论上的高精度,使用了复杂的算法 ,算法整体耗时明显增加,雷达系统从检测到输出跟踪目标的时间拉长,ADAS功能响应被拖慢。                   

        6.检测点云稀疏,目标识别准确率低。可以使用一些分类训练方法提高,但和视觉算法差距明显。解决方法是使用多传感器融合,利用不同传感器的优势,提高精度和准确度,但融合算法本身也有一些难点,工程实现仍有不少路要走。

        7.4D雷达缺少充分的布阵方法和信号处理算法研究,硬件成本居高不下的情况下很难推动主机厂装配上车,雷达厂商减少这方面的研发投入,延缓了技术进步的速度。

2 工程经验教训

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奔袭的算法工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值