黎曼曲率张量漫谈(续)

本文深入探讨了黎曼曲率张量的计算,特别是使用Newman-Penrose形式在四维时空中的应用。通过定义类光标架和相应的自旋系数,阐述了曲率张量的表达式和相关的对易关系,以及外尔张量和里奇张量的表示。同时,还介绍了比安基恒等式及其在曲率计算中的作用。
摘要由CSDN通过智能技术生成

黎曼曲率张量

计算黎曼曲率张量

用Newman-Penrose形式计算

本节我们使用 ( + , − , − , − ) (+, -, -, -) (+,,,)号差。设 p p p是4维时空 ( M , g a b ) (M, g_{ab}) (M,gab)的一点, { ( e μ ) a } \{(e_\mu)^a\} { (eμ)a} p p p点的一个正交归一标架,定义 p p p点的4个特殊矢量如下:
l a = 1 2 [ ( e 0 ) a + ( e 1 ) a ] ,   n a = 1 2 [ ( e 0 ) a − ( e 1 ) a ] m a = 1 2 [ ( e 2 ) a + i ( e 3 ) a ] ,   m ˉ a = 1 2 [ ( e 2 ) a − i ( e 3 ) a ] l^a = \frac{1}{\sqrt 2}[(e_0)^a + (e_1)^a], ~ n^a = \frac{1}{\sqrt 2}[(e_0)^a - (e_1)^a] \\ m^a = \frac{1}{\sqrt 2}[(e_2)^a + i(e_3)^a], ~ \bar m^a = \frac{1}{\sqrt 2}[(e_2)^a - i(e_3)^a] la=2 1[(e0)a+(e1)a], na=2 1[(e0)a(e1)a]ma=2 1[(e2)a+i(e3)a], mˉa=2 1[(e2)ai(e3)a]
容易验证 l a l a = n a n a = m a m a = m ˉ a m ˉ a = 0 l_al^a = n_an^a = m_am^a = \bar m_a\bar m^a = 0 lala=nana=mama=mˉamˉa=0,即它们都是类光矢量。这4个矢量构成 p p p点的一个基底,称为 p p p点的一个类光标架。以下以 { ( ε μ ) a } \{(\varepsilon_\mu)^a\} { (εμ)a}代表类光标架,并规定其编号为
( ε 1 ) a = l a ,   ( ε 2 ) a = n a ,   ( ε 3 ) a = m a ,   ( ε 4 ) a = m ˉ a (\varepsilon_1)^a = l^a, ~ (\varepsilon_2)^a = n^a, ~ (\varepsilon_3)^a = m^a, ~ (\varepsilon_4)^a = \bar m^a (ε1)a=la, (ε2)a=na, (ε3)a=ma, (ε4)a=mˉa
相应的对偶基矢为
( ε 1 ) a = n a ,   ( ε 2 ) a = l a ,   ( ε 3 ) a = − m ˉ a ,   ( ε 4 ) a = − m a (\varepsilon^1)_a = n_a, ~ (\varepsilon^2)_a = l_a, ~ (\varepsilon^3)_a = -\bar m_a, ~ (\varepsilon^4)_a = -m^a (ε1)a=na, (ε2)a=la, (ε3)a=mˉa, (ε4)a=ma
不难看出类光标架中任意两个基矢的内积只有以下两对非零:
l a n a = 1 ,   m a m ˉ a = − 1 l^an_a = 1, ~ m^a\bar m_a = -1 lana=1, mamˉa=1
因此度规 g a b g_{ab} gab及其逆 g a b g^{ab} gab在该标架的分量 g μ ν g_{\mu\nu} gμν g μ ν g^{\mu\nu} gμν组成的矩阵为
( g μ ν ) = [ 0 1 0 0 1 0 0 0 0 0 0 − 1 0 0 − 1 0 ] = ( g μ ν ) (g_{\mu\nu}) = \begin{bmatrix} 0 &1 &0 &0 \\ 1 &0 &0 &0 \\ 0 &0 &0 &-1 \\ 0 &0 &-1 &0 \end{bmatrix} = (g^{\mu\nu}) (gμν)=0100100000010010=(gμν)
这表明类光标架是刚性标架。与上节类似,联络1形式可以表示为
( ω μ ν ) a = ( ε μ ) c ∇ a ( ε ν ) c (\omega_\mu{}^\nu)_a = (\varepsilon_\mu)^c\nabla_a(\varepsilon^\nu)_c (ωμν)a=(εμ)ca(εν)c
同样地
( ω μ ν ) a = ( ε μ ) b ∇ a ( ε ν ) b = − ( ω ν μ ) a (\omega_{\mu\nu})_a = (\varepsilon_\mu)^b\nabla_a(\varepsilon_\nu)_b = -(\omega_{\nu\mu})_a (ωμν)a=(εμ)ba(εν)b=(ωνμ)a
相应的里奇旋转系数为 ω μ ν ρ = ( ω μ ν ) a ( ε ρ ) a \omega_{\mu\nu\rho} = (\omega_{\mu\nu})_a(\varepsilon_\rho)^a ωμνρ=(ωμν)a(ερ)a. 黎曼曲率张量的计算过程与上节一样,只是其中的 ( e μ ) a (e_\mu)^a (eμ)a现在应理解为 ( ε μ ) a (\varepsilon_\mu)^a (εμ)a.

由于 ε 3 \varepsilon_3 ε3 ε 4 \varepsilon_4 ε4的共轭性,容易证明交换3、4下标就得到对应量的共轭,例如 ω 421 = ω ˉ 321 ,   ω 14 = ω ˉ 13 ,   R 24 = R ˉ 23 \omega_{421} = \bar\omega_{321}, ~ \omega_{14} = \bar\omega_{13}, ~ R_{24} = \bar R_{23} ω421=ωˉ321, ω14=ωˉ13, R24=Rˉ23等。这导致24个复 ω μ ν ρ \omega_{\mu\nu\rho} ωμνρ中只有12个是独立的,以12个不带指标的希腊字母表示它们为
κ = − ω 311 ,   ρ = − ω 314 ,   ε = 1 2 ( ω 211 − ω 341 ) σ = − ω 313 ,   μ = ω 243 ,   γ = 1 2 ( ω 212 − ω 342 ) λ = ω 244 ,   τ = − ω 312 ,   α = 1 2 ( ω 214 − ω 344 ) ν = ω 242 ,   π = ω 241 ,   β = 1 2 ( ω 213 − ω 343 ) \begin{aligned} &\kappa = -\omega_{311}, ~ \rho = -\omega_{314}, ~ &\varepsilon = \frac{1}{2}(\omega_{211} - \omega_{341}) \\ &\sigma = -\omega_{313}, ~ \mu = \omega_{243}, ~ &\gamma = \frac{1}{2}(\omega_{212} - \omega_{342}) \\ &\lambda = \omega_{244}, ~ \tau = -\omega_{312}, ~ &\alpha = \frac{1}{2}(\omega_{214} - \omega_{344}) \\ &\nu = \omega_{242}, ~ \pi = \omega_{241}, ~ &\beta = \frac{1}{2}(\omega_{213} - \omega_{343}) \end{aligned} κ=ω311

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值