Pytorch
Vic_Hao
这个作者很懒,什么都没留下…
展开
-
Pytorch基本操作
1.torch. from_numpy从np.ndarray创建一个张量2.torch. linspace(start, end, step)返回开始和结束之间等间隔点的一维张量,step为点的个数3.torch.rand(*sizes)返回一个张量,包含了从区间[0,1)的均匀分布中抽取的一组随机数,形状由可变参数sizes定义4.torch.randn(*sizes)返回一个张量...原创 2018-11-04 21:56:00 · 396 阅读 · 0 评论 -
Pytorch——model.train 和 model.eval
两条语句有固定的使用场景。在训练模型时会在前面加上:model.train()在测试模型时在前面使用:model.eval()同时发现,如果不使用这两条语句,程序也可以运行。这两个方法是针对在网络train和eval时采用不同方式的情况,比如Batch Normalization和Dropout。下面对这Batch Normalization和Dropout做一下详细的解析...转载 2019-06-10 23:18:09 · 9134 阅读 · 1 评论 -
torch.nn.utils模块详解
该模块里主要有四个功能。clip_graddef clip_grad_norm(parameters, max_norm, norm_type=2)修剪可迭代Parameters的梯度范数,范数由所有梯度共同计算得到,把它们看作一个向量,梯度被in-place operation修改。parameters:parameters(Iterable[Variable])——要进行梯度归一...原创 2019-06-10 19:36:29 · 4098 阅读 · 0 评论 -
torch.Tensor和torch.tensor的区别
在Pytorch中,Tensor和tensor都用于生成新的张量。>>> a = torch.Tensor([1, 2])>>> atensor([1., 2.])>>> a=torch.tensor([1,2])>>> atensor([1, 2])首先我们从根源上来看看torch.Tensor()和to...转载 2019-06-10 16:34:48 · 111168 阅读 · 2 评论 -
torch.multinomial()理解
torch.multinomial(input, num_samples, replacement=False, out=None) # 返回LongTensor这个函数的作用是对input的每一行做n_samples次取值,输出的张量是每一次取值时input张量对应行的下标。输入是一个input张量,一个取样数量,和一个bool值的replacement。input张量可以看成一个权重张...转载 2019-06-09 11:54:28 · 2832 阅读 · 0 评论 -
torch.nn.Linear()
import torchx = torch.randn(128, 20) # 输入的维度是(128,20)m = torch.nn.Linear(20, 30) # 20, 30是指维度output = m(x)print('m.weight.shape:\n', m.weight.shape)print('m.bias.shape:\n', m.bias.shape)print('...转载 2019-06-01 23:16:09 · 10441 阅读 · 1 评论 -
Pytorch nn.init 参数初始化方法
Gain is a proportional value that shows the relationship between the magnitude of the input to the magnitude of the output signal at the steady state. Many systems contain a method by which the gain c...转载 2019-06-01 09:10:57 · 16519 阅读 · 0 评论 -
torch.distributions 详解
distributions包含可参数化的概率分布和采样函数,这允许构造用于优化的随机计算图和随机梯度估计器。通常,不可能直接通过随机样本反向传播。但是,有两种方法可以创建可以反向传播的代理函数,即得分函数估计器/似然比函数估计器/REINFORCE和pathwise derivative估计器。REINFORCE通常被视为强化学习中策略梯度方法的基础,并且pathwise derivative估...转载 2019-06-05 11:29:07 · 21595 阅读 · 0 评论 -
Pytorch torch.nn.BatchNorm2d()
Reference:https://blog.csdn.net/tmk_01/article/details/80679549https://blog.csdn.net/xk_snail/article/details/80006624原创 2019-05-10 23:38:05 · 1936 阅读 · 0 评论 -
torch.nn.conv2d
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)parameters:in_channels (int) - Number of channels in the input imageout_channels (int)...转载 2019-05-10 23:03:46 · 370 阅读 · 0 评论 -
Pytorch nn.Module模块详解
torcn.nn是专门为神经网络设计的模块化接口. nn构建于autograd之上,可以用来定义和运行神经网络。nn.Module是nn中十分重要的类,包含网络各层的定义及forward方法。如何定义自己的网络:需要继承nn.Module类,并实现forward方法。一般把网络中具有可学习参数的层放在构造函数__init__()中。不具有可学习参数的层(如ReLU)可放在构造函数中,也...原创 2019-05-10 21:41:59 · 44490 阅读 · 2 评论 -
梯度是如何在Pytorch中传递的
在Pytorch中,传入网络中计算的数据类型必须是Tensor类型,如果requires_grad = True的话,就会保存着梯度和创建这个Tensor的function的引用,换句话说,就是记录网络每层的梯度和网络图,可以实现梯度的反向传播,网络图可以表示如下(来自Deep Learning with PyTorch: A 60 Minute Blitz):input→conv2d→relu...转载 2019-06-11 00:51:59 · 1909 阅读 · 0 评论