多模态大模型——通用人工智能路径的探索

7月9日,中国科学院自动化研究所所长徐波在2021世界人工智能大会(WAIC2021)上就人工智能的最新进展进行报告,发布了自动化所研发的跨模态通用人工智能平台—“紫东太初”。

多模态大模型——通用人工智能路径的探索

“紫东太初” 跨模态通用人工智能平台以多模态大模型为核心,基于全栈国产化基础软硬件平台,可支撑全场景AI应用。

多模态预训练模型被广泛认为是从限定领域的弱人工智能迈向通用人工智能路径的探索。自动化所 “紫东太初” 跨模态通用人工智能平台瞄准成为实现通用人工智能的开天之斧,在智能世界混沌初开之际开辟新局。

依托面向超大规模的高效分布式训练框架,自动化所构建了具有业界领先性能的中文预训练模型、语音预训练模型、视觉预训练模型,并开拓性地通过跨模态语义关联实现了视觉-文本-语音三模态统一表示,构建了三模态预训练大模型,赋予跨模态通用人工智能平台多种核心能力。

“紫东太初”兼具跨模态理解和生成能力。与单模态和图文两模态相比,其采用一个大模型就可以灵活支撑图-文-音全场景AI应用,具有了在无监督情况下多任务联合学习、并快速迁移到不同领域数据的强大能力。引入语音模态后的多模态预训练模型,可实现共性图文音语义空间表征和利用,并突破性地直接实现三模态的统一表示。特别地首次使 “以图生音”和“以音生图”成为现实,对更广泛、更多样的下游任务提供模型基础支撑,达成AI在如视频配音、语音播报、标题摘要、海报创作等更多元场景的应用。

此外,自动化所研发团队还提出了弱关联三模态数据的语义统一表达,可同时支持三种或任两种模态弱关联数据进行预训练,有效降低了多模态数据收集与清洗成本。

多模态大模型——通用人工智能路径的探索

总结来说,此跨模态通用人工智能平台包括三大关键技术和六大核心能力。三大关键技术为多模态理解与生成多任务统一建模、面向国产化软硬件的高效训练与部署、多模态预训练模型架构设计与优化。六大核心能力则体现为多模态统一表示与语义关联、跨模态内容转化与生成、预训练模型网络架构合计、标注受限自监督模型学习、模型适配与分布式训练、模型轻量化与推理加速。

会上,徐波所长展示了自动化所打造的虚拟人“小初”,通用多模态大模型的人机对话演示,展示了不同模态间的互相转换和生成实例,涵盖视频描述、智能问答、图像检索、吟诗作赋、中文续写、双语翻译、语音识别等多个功能。生动证明,通过图文音三模态的关联与协同可以有效的提升机器的理解和生成能力,让AI接近人类想象力!

徐波表示,“大数据+大模型+多模态”将改变当前单一模型对应单一任务的人工智能研发范式,多模态大模型将成为不同领域的共性平台技术,是迈向通用人工智能路径的探索,具有广阔的应用前景。同时,全栈国产化通用人工智能平台的实践将使人工智能研发的规则发生重大变革并逐渐形成壁垒,对我国实现AI领域科技创新、占领核心技术高地具有重要的战略意义。

— 完 —

### 关于汽车行业垂直领域中基于知识和数据双重驱动的多模态大型模型 #### 知识图谱与数据驱动相结合的重要性 在汽车行业中,通过融合知识图谱与大规模数据集来构建AI模型能够显著提升系统的性能。这种结合不仅提高了模型的理解能力,还增强了其推理能力和决策支持功能[^1]。 #### 行业趋势向B2B转移及其影响 当前的人工智能发展趋势显示,许多先进的算法和技术正在逐渐从消费级市场转向企业服务方向发展,在此背景下,汽车产业作为重要的工业部门之一也受到了深刻的影响。特别是对于那些希望利用最新科技成果改进产品设计、制造流程以及客户服务体验的企业来说,采用定制化的解决方案变得尤为关键[^3]。 #### 技术实现路径概述 为了满足上述需求,开发者可以借助强大的计算资源如GPU集群,并运用专门针对自然语言处理和其他任务优化过的框架来进行高效的研发工作。这其中包括但不限于对预训练好的通用大模型实施微调操作——即fine-tuning过程中的各个环节,比如精心挑选并准备高质量的数据样本用于再训练阶段;同时也要考虑如何有效地压缩模型体积以便更好地适应实际应用场景的要求[^2]。 ```python import torch from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments def fine_tune_model(train_dataset, eval_dataset): model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased') training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=8, per_device_eval_batch_size=8, warmup_steps=500, weight_decay=0.01, logging_dir='./logs', ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset ) trainer.train() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值