【矩阵论】1.方阵函数

1. 方阵函数

1.1 方阵函数的定义

首先我们定义一些符号方便使用。

定义 1.1.1 特征多项式 χ A ( λ ) = ∣ λ E − A ∣ \chi_A(\lambda)=|\lambda E-A| χA(λ)=λEA 的根系(连重数)称为方阵 A A A S p e c A \mathrm {Spec}A SpecA.
m A ( λ ) m_A(\lambda) mA(λ) 的根系(连重数)称为方阵 A A A简谱 R s p e c A \mathrm{Rspec}A RspecA.

定义 1.1.2 f f f 是任一函数 ( 有后面所需的各处各阶导数 ) , 则
{ f ( j ) ( λ i ) ∣ j = 0 , 1 , ⋯   , m i − 1 , i = 1 , ⋯   , k } \{f^{(j)}(\lambda_i)|j=0,1,\cdots,m_{i-1},i=1,\cdots,k\} {f(j)(λi)j=0,1,,mi1,i=1,,k} f f f A A A 的简谱 { λ 1 , ⋯   , λ 1 , ⋯   , λ k , ⋯   , λ k } \{\lambda_1 ,\cdots ,\lambda_1 ,\cdots,\lambda_k,\cdots,\lambda_k\} {λ1,,λ1,,λk,,λk} 处的值 , 记作 f ( R s p e c A ) f(\mathrm{Rspec}A) f(RspecA) f ( Λ A ) f(\Lambda_A) f(ΛA) .

根据多项式函数 f ( λ ) = a 0 λ l + a 1 λ l − 1 + ⋯ + a l f(\lambda)=a_0\lambda^l+a_1\lambda^{l-1}+\cdots+a_l f(λ)=a0λl+a1λl1++al , 定义方阵函数 f ( A ) = a 0 A l + a 1 A l − 1 + ⋯ + a l I n . f(\boldsymbol{A})=a_0\boldsymbol{A}^l+a_1\boldsymbol{A}^{l-1}+\cdots+a_l\boldsymbol{I}_n. f(A)=a0Al+a1Al1++alIn. 这时,若有另一多项式 g ( λ ) g(\lambda) g(λ), 则易知
f ( A ) = g ( A ) ⇔ m A ( λ )   ∣   ( f ( λ ) − g ( λ ) )   , f(A)=g(A)\Leftrightarrow m_A(\lambda)\:|\:(f(\lambda)-g(\lambda))\:, f(A)=g(A)mA(λ)(f(λ)g(λ)), m A ( λ ) m_{A}(\lambda) mA(λ) A A A 的最小多项式. 若记 m A ( λ ) = ( λ − λ 1 ) m 1 ⋯ ( λ − λ k ) m k m_A(\lambda)=(\lambda-\lambda_1)^{m_1}\cdots(\lambda-\lambda_k)^{m_k} mA(λ)=(λλ1)m1(λλk)mk, d e g   m A ( λ ) = m 1 + ⋯ + m k = m \mathrm{deg}~m_A(\lambda)=m_1+\cdots+m_k=m deg mA(λ)=m1++mk=m ,则 f ( λ ) − g ( λ ) f(\lambda)-g(\lambda) f(λ)g(λ) λ i \lambda_i λi 处至少有 m i m_i mi 重根,即 m A ( λ ) ∣ ( f ( λ ) − g ( λ ) ) ⇔ f ( j ) ( λ i ) = g ( j ) ( λ i ) ( i = 1 , ⋯   , k   ; j = 0 , 1 , ⋯   , m i − 1 ) m_A(\lambda)\mid(f(\lambda)-g(\lambda))\Leftrightarrow f^{(j)}(\lambda_i)=g^{(j)}(\lambda_i)( i = 1, \cdots, k~; j = 0, 1, \cdots, m_{i} - 1 ) mA(λ)(f(λ)g(λ))f(j)(λi)=g(j)(λi)(i=1,,k ;j=0,1,,mi1)这里 f ( j ) ( λ i ) f^{(j)}(\lambda_{i}) f(j)(λi) 是多项式函数 f ( λ ) f(\lambda) f(λ) j j j 次导数在 λ = λ i \lambda=\lambda_i λ=λi 时的值 .
所以,对多项式 f ( λ ) f(\lambda) f(λ) 来说, f ( A ) f(A) f(A) 有总共 m = m 1 + ⋯ + m k m=m_1+\cdots+m_k m=m1++mk 个值
f ( λ i ) , f ( 1 ) ( λ i ) , ⋯   , f ( m i − 1 ) ( λ i ) ( i = 1 , ⋯   , k ) f(\lambda_i),f^{(1)}(\lambda_i),\cdots,f^{(m_i-1)}(\lambda_i)\quad(i=1,\cdots,k) f(λi),f(1)(λi),,f(mi1)(λi)(i=1,,k)是唯一确定的. 如果 m m m 个等式 f ( j ) ( λ i )   =   g ( j ) ( λ i ) ( i = 1 , ⋯   , k   ; j = 0 , 1 , ⋯   , m i − 1 ) f^{(j)}\left(\lambda_i\right)\:=\:g^{(j)}\left(\lambda_i\right)\quad(i=1,\cdots,k\:;j=0,1,\cdots,m_i-1) f(j)(λi)=g(j)(λi)(i=1,,k;j=0,1,,mi1) 成立,这 m m m 个等式可简记为 f ( Λ A ) = g ( Λ A ) f(\Lambda_A)=g(\Lambda_A) f(ΛA)=g(ΛA) , 则对多项式 f ( λ ) f(\lambda) f(λ) g ( λ ) g(\lambda) g(λ), 有
f ( A )   =   g ( A ) ⇔ f ( Λ A ) = g ( Λ A )   . f(A)\:=\:g(A)\Leftrightarrow f(\Lambda_A)=g(\Lambda_A)\:. f(A)=g(A)f(ΛA)=g(ΛA).现在来对一般的 f ( λ ) f(\lambda) f(λ) 定义 f ( A ) . f(\boldsymbol{A}). f(A).

我们总 假设 f ( λ ) f(\lambda) f(λ) 在各 λ i \lambda_i λi 处有直到 m i − 1 m_i-1 mi1 阶的导数——简称为 f ( λ ) f(\lambda) f(λ) Λ A \Lambda_\mathrm{A} ΛA 上有意义.

定义 1.1.3 (矩阵函数的第一种定义) 对函数 f ( λ ) f(\lambda) f(λ) , 如果有多项式 p ( λ ) p(\lambda) p(λ) 使 p ( Λ A ) = f ( Λ A ) p(\Lambda_{A})=f(\Lambda_{A}) p(ΛA)=f(ΛA), 则定义 f ( A ) = p ( A ) f(\boldsymbol{A})=p(\boldsymbol{A}) f(A)=p(A), 并称 p ( λ ) p(\lambda) p(λ) f ( A ) f(\boldsymbol{A}) f(A)定义多项式

p ( λ ) p(\lambda) p(λ) 是与 f ( λ ) f(\lambda) f(λ) A \boldsymbol{A} A 的简谱处的值全部相等的多项式, p ( j ) ( λ i ) = f ( j ) ( λ i ) p^{(j)}(\lambda_{i})=f^{(j)}(\lambda_{i}) p(j)(λi)=f(j)(λi) ( j = 0 , 1 , ⋯   , m i − 1 , i = 1 , ⋯   , k ) (j=0,1,\cdots,m_{i}-1,i=1,\cdots,k) (j=0,1,,mi1,i=1,,k)。定义多项式不唯一,两定义多项式之差是 m A ( λ ) m_{A}(\lambda) mA(λ) 的倍数,次数小于 m A ( λ ) m_{A}(\lambda) mA(λ) 的定义多项式唯一

例 1.1.4 A = ( 1 4 3 2 ) A=\begin{pmatrix}1&4\\3&2\end{pmatrix} A=(1342),求 e A e^{A} eA .
f A ( λ ) = ∣ λ − 1 − 4 − 3 λ − 2 ∣ = ( λ − 5 ) ( λ + 2 ) . f_{A}(\lambda)=\left|\begin{matrix}\lambda-1&-4\\-3&\lambda-2\end{matrix}\right|=(\lambda-5)(\lambda+2). fA(λ)= λ134λ2 =(λ5)(λ+2). 则最小多项式 m A ( λ ) m_{A}(\lambda) mA(λ) 也是 ( λ − 5 ) ( λ + 2 ) (\lambda-5)(\lambda+2) (λ5)(λ+2) .
由小于 m A ( λ ) m_{A}(\lambda) mA(λ) 的定义多项式唯一 ,设定义多项式 r ( a ) = a λ + b r(a)=a\lambda+b r(a)=+b, 则 { r ( 5 ) = 5 a + b = e 5 r ( − 2 ) = − 2 a + b = e − 2 \begin{cases}r(5)=5a+b=e^{5}\\r(-2)=-2a+b=e^{-2}\end{cases} {r(5)=5a+b=e5r(2)=2a+b=e2
⇒ { a = 1 7 ( e 5 − e − 2 ) b = 1 7 ( 2 e 5 + 5 e − 2 ) ⇒ e A = r ( A ) = 1 7 ( e 5 − e − 2 ) A + 1 7 ( 2 e 5 + 5 e − 2 ) I \begin{aligned}&\Rightarrow\begin{cases}a=\frac{1}{7}(e^{5}-e^{-2})\\b=\frac{1}{7}(2e^{5}+5e^{-2})\end{cases}&\Rightarrow e^{A}=r(A)=\frac{1}{7}(e^{5}-e^{-2})A+\frac{1}{7}(2e^{5}+5e^{-2})I\end{aligned} {a=71(e5e2)b=71(2e5+5e2)eA=r(A)=71(e5e2)A+71(2e5+5e2)I

例 1.1.5 A = ( 0 − 1 4 4 ) A=\begin{pmatrix}0&-1\\4&4\end{pmatrix} A=(0414) , 求 arcsin ⁡ A 4 \arcsin\dfrac{A}{4} arcsin4A.
f A ( λ ) = ∣ λ 1 − 4 λ − 4 ∣ = ( λ − 2 ) 2 f_{A}(\lambda)=\begin{vmatrix}\lambda&1\\-4&\lambda-4\end{vmatrix}=(\lambda-2)^{2} fA(λ)= λ41λ4 =(λ2)2, D 1 ( x ) = 1 , D 2 ( x ) = ( λ − 2 ) 2 = d 2 ( x ) = m A D_{1}(x)=1,D_{2}(x)=(\lambda-2)^{2}=d_{2}(x)=m_{A} D1(x)=1,D2(x)=(λ2)2=d2(x)=mA
设  r ( x ) = a λ + b ,则 { r ( 2 ) = 2 a + b = arcsin ⁡ 2 4 ∗ π 6 r ′ ( 2 ) = a = 1 1 − ( 2 4 ) 2 ∗ 1 4 = 3 6 ⇒ b = π 6 − 2 3 6 arcsin ⁡ A 4 = r ( A ) = 3 6 A + π − 2 3 6 I \begin{aligned}&\text{设}~r(x)=a\lambda+b,\text{则}\begin{cases}r(2)=2a+b=\arcsin\dfrac{2}{4}*\dfrac{\pi}{6}\\r^{\prime}(2)=a=\dfrac{1}{\sqrt{1-(\frac{2}{4})^{2}}}*\dfrac14=\dfrac{\sqrt{3}}{6}\end{cases} \Rightarrow b=\frac{\pi}{6}-2\dfrac{\sqrt{3}}{6}\\ &\arcsin\frac{A}{4}= r(A)=\frac{\sqrt{3}}{6}A+\frac{\pi-2\sqrt{3}}{6}I\end{aligned}  r(x)=+b r(2)=2a+b=arcsin426πr(2)=a=1(42)2 141=63 b=6π263 arcsin4A=r(A)=63 A+6π23 I

例 1.1.6 A A A 可逆, f ( λ ) = 1 λ f(\lambda)=\frac{1}{\lambda} f(λ)=λ1, 则 f ( A ) = A − 1 f(A)=A^{-1} f(A)=A1
解 记 f A ( λ ) = a ( λ g ( λ ) − 1 ) f_{A}(\lambda)=a(\lambda g(\lambda)-1) fA(λ)=a(λg(λ)1),则 λ g ( λ ) \lambda g(\lambda) λg(λ) 1 1 1 R s p e c A \mathrm{RspecA} RspecA 处全相等
⇒ g ( λ ) 与 1 λ 在  R s p e c A  处全相等 ⇒ g ( λ ) = 1 λ ⇒ f ( A ) = g ( A ) = A − 1 \begin{aligned}&\Rightarrow g(\lambda)\text{与}\frac{1}{\lambda}{在~\mathrm{RspecA}~处全相等}\Rightarrow g(\lambda)=\frac{1}{\lambda}\Rightarrow f(A)=g(A)=A^{-1}\end{aligned} g(λ)λ1 RspecA 处全相等g(λ)=λ1f(A)=g(A)=A1

定义 1.1.7 (矩阵函数的第二种定义) 设复函数 f ( λ ) f(\lambda) f(λ) 在开圆域 ∣ λ − λ 0 ∣ < r |\lambda-\lambda_0|<r λλ0<r 内解析,即 f ( λ ) f(\lambda) f(λ) 在此开圆域内可展开成幂级数 f ( λ )   =   ∑ k   =   0 ∞ a k ( λ   −   λ 0 ) k   , f(\lambda)\:=\:\sum_{k\:=\:0}^\infty a_k(\lambda\:-\:\lambda_0)^k\:, f(λ)=k=0ak(λλ0)k,只要方阵 A A A 的所有特征值都在这个开圆域内,就有
f ( A )   =   ∑ k   =   0 ∞ a k   ( A − λ 0 I ) k   . f(A)\:=\:\sum_{k\:=\:0}^{\infty}a_{k}\:(A-\lambda_{0}I)^{k}\:. f(A)=k=0ak(Aλ0I)k.首先第一种定义的矩阵函数有如下的基本性质:

  1. A = S B S − 1 ⇒ f ( A= \boldsymbol{SBS}^{- 1}\Rightarrow f( A=SBS1f( A \boldsymbol{A} A ) = S f ( ) = \boldsymbol{S}f( )=Sf( B \boldsymbol{B} B ) S − 1 ) \boldsymbol{S}^{- 1} )S1 ;
  2. f ( A 1 ⊕ ⋯ + ⨁ A l ) = f ( A 1 ) ⊕ ⋯ ⊕ f ( A l ) = p ( Λ B ) . f( \boldsymbol{A}_{1}\oplus \cdots + \bigoplus \boldsymbol{A}_{l}) = f( \boldsymbol{A}_{1}) \oplus \cdots \oplus f( \boldsymbol{A}_{l}) = p( \Lambda _{B}) . f(A1+Al)=f(A1)f(Al)=p(ΛB).

证 (1) 由 A = S B S − 1 A=SBS^{-1} A=SBS1 可知 m A ( λ ) = m B ( λ ) m_A(\lambda)=m_B(\lambda) mA(λ)=mB(λ) , 从而 Λ A = Λ B , f ( Λ A ) = \Lambda_A=\Lambda_B,f(\Lambda_A)= ΛA=ΛB,f(ΛA)= f ( Λ B ) . f(\Lambda_{B}). f(ΛB).
于是 f ( Λ A ) = p ( Λ A ) ⇒ f(\Lambda_A)=p(\Lambda_A) \Rightarrow f(ΛA)=p(ΛA) f ( Λ B ) = p ( Λ B ) , f ( A ) = p ( A ) = S p ( B ) S − 1 = f(\Lambda_B)=p(\Lambda_B) ,f(A)=p(A)={S}p({B}){S}^{-1}= f(ΛB)=p(ΛB),f(A)=p(A)=Sp(B)S1= S f ( Sf( Sf( B B B ) S − 1 S^{- 1} S1 .
(2) 由于 m A ( λ ) m_A(\lambda) mA(λ) 一定是每个 A i A_i Ai 的零化多项式,所以 m A i ( λ ) ∣ m A ( λ ) ⇒ Λ A i m_{A_i}(\lambda)|m_A(\lambda)\Rightarrow\Lambda_{A_i} mAi(λ)mA(λ)ΛAi ⊆ Λ A . \subseteq\Lambda_{\boldsymbol{A}}. ΛA. 从而对 f ( A ) f(\boldsymbol{A}) f(A) 的任一定义多项式 p ( λ ) p(\lambda) p(λ) 来说 , p ( A 1 ⊕ ⋅ ⋅ ⋅ ⊕ A l ) = p ( A 1 ) ⊕ ⋯ ,p(\boldsymbol{A}_1\oplus\cdotp\cdotp\cdotp\oplus\boldsymbol{A}_l)=p(\boldsymbol{A}_1)\oplus\cdots ,p(A1⋅⋅⋅Al)=p(A1) + ⊕ p ( A l ) +\oplus p(\boldsymbol{A}_{l}) +p(Al)显然成立,故 2 成立.

  1. 定理 1.1.8 (若当块的幂级数) f ( z ) = ∑ m = 0 ∞ a m z m f(z)=\sum_{m=0}^{\infty}a_{m}z^{m} f(z)=m=0amzm 的收敛半径 R R R , J = ( a 1 a ⋱ ⋱ 1 a ) J=\begin{pmatrix}a&1&&\\&a&\ddots&\\&&\ddots&1\\&&&a\end{pmatrix} J= a1a1a , 其中 ∣ a ∣ < R |a|<R a<R ,则 f ( J ) = ∑ m = 1 ∞ a m J m = ( f ( a ) f ′ ( a ) 1 ! f ′ ′ ( a ) 2 ! ⋯ f ( p − 1 ) ( a ) ( p − 1 ) ! f ( a ) ⋱ ⋱ ⋱ f ′ ( a ) 1 ! f ( a ) ) f(J)=\left.\sum_{m=1}^{\infty}a_{m}J^{m}=\left(\begin{array}{cccccc}f(a)&\dfrac{f^{\prime}(a)}{1!}&\dfrac{f^{\prime\prime}(a)}{2!}&\cdots&\dfrac{f^{(p-1)}(a)}{(p-1)!}\\&f(a)&&&\\&&\ddots&\ddots&\\&&&\ddots&\dfrac{f^{\prime}(a)}{1!}\\&&&&f(a)\end{array}\right.\right) f(J)=m=1amJm= f(a)1!f(a)f(a)2!f′′(a)(p1)!f(p1)(a)1!f(a)f(a)

证 记 H = J − a E H=J-aE H=JaE, 则 J m = ( H + a E ) m = ∑ i = 0 m C m i a m − i H i = ∑ i = 0 ∞ C m i a m − i H i ( 当 i > m y , C m i = 0 ) J^{m}=(H+aE)^{m}=\sum_{i=0}^{m}C_{m}^{i}a^{m-i}H^{i} =\sum_{i=0}^{\infty}C_{m}^{i}a^{m-i}H^{i}(\text{当}i>my,C_{m}^{i}=0) Jm=(H+aE)m=i=0mCmiamiHi=i=0CmiamiHi(i>my,Cmi=0)
  ~  
∑ m = 0 ∞ a m J m = ∑ m = 0 ∞ a m ∑ i = 0 ∞ C m i a m − i H i = ∑ i = 0 ∞ ( ∑ m = 0 ∞ a m C m i a m − i ) H i = ∑ i = 0 ∞ 1 i ! H i ( ∑ m = 0 ∞ a m m ( m + 1 ) ⋯ ( m − i + 1 ) a m − i ) = ∑ i = 0 ∞ 1 i ! H i f ( i ) ( a ) i ≥ p  时  H i = 0 \qquad\qquad\qquad\qquad \begin{aligned}\sum_{m=0}^{\infty}a_{m}J^{m}&=\sum_{m=0}^{\infty}a_{m}\sum_{i=0}^{\infty}C_{m}^ia^{m-i}H^{i}=\sum_{i=0}^{\infty}(\sum_{m=0}^{\infty}a_{m}C_{m}^{i}a^{m-i})H^{i}\\ &=\sum_{i=0}^{\infty}\frac{1}{i!}H^{i}(\sum_{m=0}^{\infty}a_{m}m(m+1)\cdots(m-i+1)a^{m-i})\\&=\sum_{i=0}^{\infty}\frac{1}{i!}H^{i}f^{(i)}(a)\quad i\geq p~\text{时}~H^{i}=0 \end{aligned} m=0amJm=m=0ami=0CmiamiHi=i=0(m=0amCmiami)Hi=i=0i!1Hi(m=0amm(m+1)(mi+1)ami)=i=0i!1Hif(i)(a)ip  Hi=0

可以发现这与若当块的第一种定义矩阵函数是一样的。所以我们可以得到如下推论。

推论 1.1.9 当函数 f ( z ) f(z) f(z) 和矩阵 A A A 满足第二种定义时 f ( A ) f(A) f(A) 的两种定义一致.

接下来了解一些 矩阵函数的性质

  1. f ( λ ) = g ( λ ) ± h ( λ ) f(\lambda)=g(\lambda)\pm h(\lambda) f(λ)=g(λ)±h(λ), 则 f ( A ) = g ( A ) ± h ( A ) f(A)=g(A)\pm h(A) f(A)=g(A)±h(A).
  2. f ( λ ) = g ( λ ) ⋅ h ( λ ) f(\lambda)=g(\lambda) · h(\lambda) f(λ)=g(λ)h(λ), 则 f ( A ) = g ( A ) ⋅ h ( A ) f(A)=g(A)· h(A) f(A)=g(A)h(A).

例 1.1.10 对于任意方阵 A A A, 有 cos ⁡ 2 A + sin ⁡ 2 A = E , sin ⁡ 2 A = 2 sin ⁡ A cos ⁡ A \cos^2A+\sin^2A=E , \sin2A=2\sin A\cos A cos2A+sin2A=E,sin2A=2sinAcosA

命题 1.1.11 设以下所有的函数为满足定义所需的各种可导条件, 设 g ( λ ) = h ( f ( λ ) ) g(\lambda)=h(f(\lambda)) g(λ)=h(f(λ)) , 则 g ( A ) = h ( f ( A ) ) g(A)=h(f(A)) g(A)=h(f(A)).

引理 1.1.12 复合函数 f ( g ( x ) ) f(g(x)) f(g(x)) 的高阶导数必为 ∑ i = 1 m f ( i ) ( g ( x ) ) r i ( x ) \sum_{i=1}^{m}f^{(i)}(g(x))r_{i(x)} i=1mf(i)(g(x))ri(x) 形式
所有 r 0 ( x ) , r 1 ( x ) , ⋯   , r m ( x ) r_0(x),r_1(x),\cdots,r_m(x) r0(x),r1(x),,rm(x) 均为 g ( x ) , g ′ ( x ) , ⋯   , g ( m ) ( x ) g(x),g^{\prime}(x),\cdots,g^{(m)}(x) g(x),g(x),,g(m)(x) 的多元多项式。

例 1.1.13 对任意方阵 B B B , 有 e B e − B = E e^Be^{-B}=E eBeB=E .
  ~  

1.2 矩阵函数的初等因子

定义 N S ( A − λ 0 E ) j NS(A-\lambda_0E)^j NS(Aλ0E)j ( A − λ 0 E ) j (A-\lambda_0E)^j (Aλ0E)j n u l l   s p a c e \mathrm{null~space} null space (零空间)

引理 1.2.1 λ 0 \lambda_0 λ0 是方阵 A A A 的一个特征值 , 记

  1. d j = dim ⁡ ( N S ( A − λ 0 E ) j ) = A d_j=\dim (NS(A-\lambda_0E)^j)=A dj=dim(NS(Aλ0E)j)=A 的阶数 − r a n k ( A − λ 0 E ) j -\mathrm{rank}\left(A-\lambda_{0}E\right)^{j} rank(Aλ0E)j ( j = 0 , 1 , 2 ) (j=0,1,2) (j=0,1,2)
    d 0 ≤ d 1 ≤ d 2 ≤ ⋯ ≤ d m = d m + 1 d_{0}\leq d_{1}\leq d_{2}\leq\cdots\leq d_{m}=d_{m+1} d0d1d2dm=dm+1, A A A 可逆时 ≤ \leq < < < ,其中 m m m 是关于 λ 0 \lambda_{0} λ0 的若当块的最大阶数。
  2. A A A 的关于 λ 0 \lambda_{0} λ0 i i i 阶若当块(相当于初等因子 ( λ − λ 0 ) (\lambda-\lambda_{0}) (λλ0)) 的个数为 g i ( i = 1 , 2 , ⋯   ) g_i(i=1,2,\cdots) gi(i=1,2,), (此处 g m ≥ 1 , g m + 1 = g m + 2 = ⋯ = 0 g_{m}\geq1,g_{m+1}=g_{m+2}=\cdots=0 gm1,gm+1=gm+2==0

g j = 2 d j − ( d j − 1 + d j + 1 ) g_{j}=2d_{j}-(d_{j-1}+d_{j+1}) gj=2dj(dj1+dj+1)

证 设 J 0 = ( λ 0 1 ⋱ 1 λ 0 ) J_0=\begin{pmatrix}\lambda_0&1&\\&\ddots&1\\&&\lambda_0\end{pmatrix} J0= λ011λ0 λ 0 \lambda_0 λ0 的一个 i i i 阶若当块,
\qquad\qquad dim ⁡ ( N S ( J 0 − λ 0 E ) j ) = { i j ≥ i i − ( i − j ) j < i = min ⁡ { i , j } \dim(NS(J_0-\lambda_0E)^j)=\begin{cases}i&j\geq i\\i-(i-j)&j<i\end{cases}=\min\{i,j\} dim(NS(J0λ0E)j)={ii(ij)jij<i=min{i,j}
于是  d j = dim ⁡ ( N S ( A − λ 0 E ) j ) = ∑ i = 1 ∞ g i ⋅ min ⁡ { i , j } = ∑ i = 1 j i g i + j ∑ i = j + 1 m g i \begin{aligned} \text{于是}~d_{j}&=\dim(NS(A-\lambda_{0}E)^{j}) =\sum_{i=1}^{\infty}g_{i}\cdot\min\{i,j\}=\sum_{i=1}^{j}ig_{i}+ j\sum_{i=j+1}^{m}g_{i}\end{aligned} 于是 dj=dim(NS(Aλ0E)j)=i=1gimin{i,j}=i=1jigi+ji=j+1mgi

即  d 1 = g 1 + g 2 + ⋯ + g m d 2 = g 1 + 2 g 2 + ⋯ + 2 g m d 3 = g 1 + 2 g 2 + 3 g 3 + ⋯ + 3 g m \begin{aligned}\text{即}~&d_{1}=g_{1}+g_{2}+\cdots+g_{m}\\&d_{2}=g_{1}+2g_{2}+\cdots+2g_{m}\\&d_{3}=g_{1}+2g_{2}+3g_{3}+\cdots+3g_{m}\end{aligned}  d1=g1+g2++gmd2=g1+2g2++2gmd3=g1+2g2+3g3++3gm

引理 1.2.2 设矩阵 B = ( a 0 a 1 … a p − 1 a 0 ⋱ ⋱ a 1 a 0 ) p × p B=\begin{pmatrix}a_0&a_1&\dots&a_{p-1}\\&a_0&\ddots&\\&&\ddots&a_1\\&&&a_0\end{pmatrix}_{p\times p} B= a0a1a0ap1a1a0 p×p 其中 a 1 = ⋯ = a k − 1 = 0 a_1=\dots=a_{k-1}=0 a1==ak1=0 a k ≠ 0 ( 1 ≤ k ≤ p − 1 ) a_k\neq 0(1\leq k\leq p-1) ak=0(1kp1) . 记 p = q k + h ( 1 ≤ h ≤ k − 1 ) p=qk+h(1\leq h\leq k-1) p=qk+h(1hk1),则 B B B 的若当标准形由 k − h k-h kh q q q 阶若当块和 h h h q − 1 q-1 q1 阶若当块.

证 记 H = ( 0 1 ⋱ ⋱ 1 0 ) H=\begin{pmatrix}0&1&&\\&&\ddots&\\&&\ddots&1\\&&&0\end{pmatrix} H= 0110 , B = a 0 H 0 + a 1 H 1 + ⋯ + a p − 1 H p − 1 . B=a_{0}H^{0}+a_{1}H^{1}+\cdots+a_{p-1}H^{p-1}. B=a0H0+a1H1++ap1Hp1.
B − a 0 E = a k H k + a k + 1 H k + 1 + ⋯ + a p − 1 H p − 1 . B-a_{0}E=a_{k}H^{k}+a_{k+1}H^{k+1}+\cdots+a_{p-1}H^{p-1}. Ba0E=akHk+ak+1Hk+1++ap1Hp1.
⇒ ( B − a 0 E ) 2 = a k j H k j + { H \Rightarrow(B-a_0E)^2=a_k^jH^{kj}+\{H (Ba0E)2=akjHkj+{H 的一些高次幂 } \} }
⇒ d j = min ⁡ { k j , p } = { k j 0 ≤ j ≤ q p j ≥ q + 1 \Rightarrow d_j=\min\left\{k{j},p\right\}=\begin{cases}kj&0\leq j\leq q\\p&j\geq q+1\end{cases} dj=min{kj,p}={kjp0jqjq+1
( i )   (i)~ (i)  j ≠ q , j ≠ q + 1 j\neq q,j\neq q+1 j=q,j=q+1时, d j − 1 , d j , d j + 1 d_{j-1},d_j,d_{j+1} dj1,dj,dj+1 成等差数列时 g j = 0 g_j=0 gj=0 .
  ~  
( i i ) 当  j = q  时   g j = 2 d q ⋅ ( d q − 1 + d q + 1 ) = 2 k q − [ k ( q − 1 ) + p ] = ( q + 1 ) k − p = ( q + 1 ) k − q k + h = q − h \begin{aligned}\text (ii) 当~j=q~时~~ g_{j}=2d_q\cdot(d_{q-1}+d_{q+1})&=2kq-[k(q-1)+p]\\&=(q+1)k-p=(q+1)k-qk+h\\&=q-h\end{aligned} (ii) j=q   gj=2dq(dq1+dq+1)=2kq[k(q1)+p]=(q+1)kp=(q+1)kqk+h=qh
( i i i ) (iii) (iii) j = q + 1 j=q+1 j=q+1 时, g j = 2 p − ( k q + p ) = p − k q = h g_j=2p-(kq+p)=p-kq=h gj=2p(kq+p)=pkq=h

f ′ ( a ) = ⋯ = f ( k − 1 ) ( a ) = 0 , f ( k ) ( a 0 ) ≠ 0 f^{\prime}(a)=\cdots=f^{(k-1)}(a)=0,f^{(k)}(a_0)\neq0 f(a)==f(k1)(a)=0,f(k)(a0)=0 p = q k + h p=qk+h p=qk+h , 则矩阵函数 f ( J ) f(J) f(J) 的若当标准形由关于 f ( a ) f(a) f(a) k − h k-h kh q q q 阶若当块和 h h h q + 1 q+1 q+1 阶若当块组成。

1.3 矩阵分析

1.3.1 矩阵序列

定义 1.3.1 (极限) A m = ( a i j ( m ) ) A_{m}=(a_{ij}^{(m)}) Am=(aij(m)) ,若 lim ⁡ m → ∞ a i j ( m ) = a i j ( ∀ i , j ) \lim_{m\to\infty}a_{ij}^{(m)}=a_{ij}(\forall i,j) limmaij(m)=aij(i,j) , 则 lim ⁡ m → ∞ A m = ( a i j ) \lim_{m\to\infty}A_{m}=(a_{ij}) limmAm=(aij).

\qquad 例如, A m = ( ( 1 2 ) m 0 0 ( 1 3 ) m ) , lim ⁡ m → ∞ A m = ( 0 0 0 0 ) A_{m}=\begin{pmatrix}(\frac{1}{2})^{m}&0\\0&(\frac{1}{3})^{m}\end{pmatrix},\lim_{m\to\infty}A_{m}=\begin{pmatrix}0&0\\0&0\end{pmatrix} Am=((21)m00(31)m),limmAm=(0000)

\qquad 性质 1    ( 1 ) lim ⁡ n → ∞ ( A m ± B m ) = lim ⁡ m → ∞ A m ± lim ⁡ m → ∞ B m ( 2 ) lim ⁡ m → ∞ ( A m ⋅ B m ) = lim ⁡ m → ∞ A m ⋅ lim ⁡ m → ∞ B m ( 3 ) lim ⁡ m → ∞ ( A m ⊕ B m ) = lim ⁡ m → ∞ A m ⊕ lim ⁡ m → ∞ B m ~~\begin{aligned}(1)&\lim_{n\to\infty}(A_{m}\pm B_{m})=\lim_{m\to\infty}A_{m}\pm\lim_{m\to\infty}B_{m}\\(2)&\lim_{m\to\infty}(A_{m}\cdot B_{m})=\lim_{m\to\infty}A_{m}\cdot\lim_{m\to\infty}B_{m}\\(3)&\lim_{m\to\infty}(A_{m}\oplus B_{m})=\lim_{m\to\infty}A_{m}\oplus\lim_{m\to\infty}B_{m}\end{aligned}   (1)(2)(3)nlim(Am±Bm)=mlimAm±mlimBmmlim(AmBm)=mlimAmmlimBmmlim(AmBm)=mlimAmmlimBm
\qquad 性质 2 (同步相似序列的极限) 若有 A m = C − 1 B m C A_{m}=C^{-1}B_{m}C Am=C1BmC ,( C C C m m m无关 ) ) ),
\qquad \qquad \qquad \qquad \qquad \quad \qquad lim ⁡ m → ∞ A m = C − 1 ( lim ⁡ m → ∞ B m ) C \lim_{m\to\infty}A_{m}=C^{-1}(\lim_{m\to\infty}B_{m})C limmAm=C1(limmBm)C

定理 1.3.2 (若当块的幂次序列的极限) J = ( a 1 a ⋱ ⋱ 1 a ) p × p ( p ⩾ 2 ) J=\begin{pmatrix}a&1&&\\&a&\ddots&\\&&\ddots&1\\&&&a\end{pmatrix}_{p\times p}(p\geqslant 2) J= a1a1a p×p(p2) , 则 lim ⁡ m → ∞ J m \lim_{m\to\infty}J^m limmJm 存在 ⇔ ∣ a ∣ < 1 \Leftrightarrow |a|<1 a<1 且极限存在时极限为 0 0 0.

证: J = a E + H ⇒ J m = ∑ i = 0 m C m i a m − i H i J=aE+H\Rightarrow J^m=\sum_{i=0}^mC_m^{i}a^{m-i}H^i J=aE+HJm=i=0mCmiamiHi
  ~  
= ( a m C m 1 a m − 1 C m 2 a m − 2 ⋯ C m p − 1 a m − p − 1 a m ⋱ ⋱ C m 1 a m − 1 a m − 1 ) =\begin{array}{ccccccc}&\left(\begin{array}{ccccccc} a^m&C_m^1a^{m-1}&C_m^2a^{m-2}&\cdots& C_m^{p-1}a^{m-p-1}\\ &a^m&&&&\\&&&&\\&&\ddots&\ddots&\\ &&&&C_m^1a^{m-1}\\&&&&a^{m-1}\end{array}\right)\end{array} = amCm1am1amCm2am2Cmp1amp1Cm1am1am1

推论 1.3.3 A A A 是方阵,则 lim ⁡ m → ∞ A m \lim_{m\to\infty}A^m limmAm 存在的充要条件:

  1. A A A 的非一特征值的绝对值均小于 1 1 1.
  2. A A A 的相应于 1 1 1 的若当块(若有的话)都是 1 1 1 阶的,极限存在的时候 lim ⁡ m → ∞ A m \lim_{m\to\infty}A^m limmAm 必是 C − 1 D C C^{-1}DC C1DC , D D D ( 0.1 ) (0.1) (0.1) 对角阵

1.3.2 矩阵级数

定义 1.3.4 ∑ m = 0 ∞ A m = lim ⁡ N → ∞ ( ∑ m = 0 N A m ) \sum_{m=0}^{\infty}A_{m}=\lim_{N\to\infty}(\sum_{m=0}^{N}A_{m}) m=0Am=limN(m=0NAm) 极限存在时称级数为收敛。

性质 1.3.5 (1) 若 A m = C − 1 B m C A_{m}=C^{-1}B_{m}C Am=C1BmC 对所有 m m m 成立( m m m C C C 无关),
∑ m = 0 ∞ A m = C − 1 ∑ m = 0 ∞ B m C \sum_{m=0}^{\infty}A_{m}=C^{-1}\sum_{m=0}^{\infty}B_{m}C m=0Am=C1m=0BmC.

(2)若 A m = B m ⊗ C m A_{m}=B_{m}\otimes C_{m} Am=BmCm,则 ∑ m = 0 ∞ A m = ∑ m = 0 ∞ B m ⊕ ∑ m = 0 ∞ C m \sum_{m=0}^{\infty}A_{m}=\sum_{m=0}^{\infty}B_{m}\oplus\sum_{m=0}^{\infty}C_{m} m=0Am=m=0Bmm=0Cm .

  • 13
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【优质项目推荐】 1、项目代码均经过严格本地测试,运行OK,确保功能稳定后才上传平台。可放心下载并立即投入使用,若遇到任何使用问题,随时欢迎私信反馈与沟通,博主会第一时间回复。 2、项目适用于计算机相关专业(如计科、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业教师,或企业员工,小白入门等都适用。 3、该项目不仅具有很高的学习借鉴价值,对于初学者来说,也是入门进阶的绝佳选择;当然也可以直接用于 毕设、课设、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,可以在此代码基础上二次开发,进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎借鉴使用,并欢迎学习交流,共同探索编程的无穷魅力! 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
### 回答1: 的作用是什么? np.corrcoef函数是用于计算两个向量之间的相关系数矩阵函数。它将两个向量作为输入并返回相关系数矩阵。相关系数矩阵描述了向量之间的线性关系,其值在-1到1之间。相关系数为1表示完全的正相关,相关系数为-1表示完全的负相关,相关系数为0表示没有线性关系。 ### 回答2: np.corrcoef函数是NumPy库中的一个函数,用于计算两个数组之间的相关系数。 相关系数是用来衡量两个变量之间关联程度的一种统计指标。它的取值范围在-1到1之间,-1表示完全的负相关,1表示完全的正相关,0表示无相关。相关系数的绝对值越接近1,表示两个变量之间的关联程度越强。 np.corrcoef函数的使用方法是 np.corrcoef(x, y),其中x和y是两个一维数组。函数会返回一个2x2的相关系数矩阵矩阵的对角线元素分别是x和y的相关系数,非对角线元素是它们的交叉相关系数。 如果x和y的长度不一致,函数会引发一个错误。另外,如果x或y的方差为0,函数也会引发一个错误。 下面是一个例子,展示了np.corrcoef函数的用法: ```python import numpy as np x = np.array([1, 2, 3, 4, 5]) y = np.array([2, 4, 6, 8, 10]) correlation_matrix = np.corrcoef(x, y) correlation_coefficient = correlation_matrix[0, 1] print(correlation_matrix) print(correlation_coefficient) ``` 此例中,输入的x和y是两个长度为5的一维数组。np.corrcoef函数计算得到的相关系数矩阵是: ``` [[1. 1.] [1. 1.]] ``` 相关系数矩阵的对角线元素都是1,表示x和x、y和y之间的相关系数为1。非对角线元素是1,表示x和y之间的相关系数也是1。 通过打印correlation_coefficient,可以得到x和y之间的相关系数,结果是1。 总之,np.corrcoef函数提供了计算相关系数的功能,方便我们衡量两个数组之间的关联程度。 ### 回答3: np.corrcoef函数是numpy库中用于计算相关系数的函数。相关系数是用来衡量两个变量之间线性相关关系强度的指标。np.corrcoef函数接受一个向量或矩阵作为参数,并返回一个相关系数矩阵。 对于一个向量x,np.corrcoef(x)将返回一个2x2的矩阵矩阵的对角线上的元素是x的相关系数,即x与自身的相关系数,一般为1,表示完全相关。非对角线元素是x与x的不同部分之间的相关系数。 对于一个m*n的矩阵X,np.corrcoef(X)将返回一个nxn的相关系数矩阵。相关系数矩阵的(i,j)元素是矩阵X的第i列与第j列之间的相关系数。这可以用于分析矩阵中不同变量之间的相关性。 需要注意的是,np.corrcoef函数默认使用皮尔逊相关系数来计算相关性。皮尔逊相关系数衡量的是两个变量之间的线性相关性,取值范围为-1到1。当相关系数接近1时,表示呈正相关,即变量随着另一个变量的增加而增加。当相关系数接近-1时,表示呈负相关,即变量随着另一个变量的增加而减少。当相关系数接近0时,表示两个变量之间没有线性相关关系。 总结起来,np.corrcoef函数是numpy库中用于计算相关系数的函数,可以用于分析变量之间的线性相关性。它能够接受向量或矩阵作为输入,并返回相关系数矩阵。通过计算相关系数,我们可以了解变量之间的相关关系,从而进行更深入的数据分析。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值