对比学习可以通过自我监督的方式捕捉时间序列数据中的时间依赖性和动态变化,这使得它特别适合处理时间序列数据,因为时间序列的本质特征就在于其随时间的演变和变化。
因此,相较于传统的时序,基于对比学习的时间序列能够适应更广泛、更复杂的应用场景,它可以更有效地从原始数据中学习到有用的特征,而不需要大量的标注数据,显著提高模型的泛化能力和性能。
以南京航空航天大学提出的TimesURL为例:
TimesURL引入了基于频率时间的增强以保持时间属性,并构建双重universe作为硬负样本来提升对比学习效果,同时将时间重构作为联合优化目标以提取段级和实例级特征。在30个单变量数据集和128个多变量数据集上的实验中,TimesURL的平均准确率分别为75.2%和84.5%。目前该工作已经被AI顶会 AAAI 2024 收录。
本文挑选了11个基于对比学习的时间序列最新成果,可借鉴的方法和创新点做了简单提炼,原文以及相应代码都整理了,方便同学们学习。
论文和开源代码需要的同学看文末
TimesURL: Self-supervised Contrastive Learning for Universal Time Series Representation Learning
方法:论文介绍了一种名为TimesURL的自监督学习框架,用于学习适用于各种类型下游任务的通用时间序列表示。该框架包括对比学习和时间重建两个关键组件,并使用设计