【机器人学中的状态估计】第一讲

1. 什么是状态估计?

在这里插入图片描述
在这里插入图片描述
通过获得传感器的观测值,建立观测值到状态量的模型,估计出状态量。

2. 概率密度函数

在这里插入图片描述
在这里插入图片描述
【后验概率】 p ( x ∣ y ) p(x|y) p(xy)为在某观测值 y y y下的状态 x x x的PDF
【似然】 p ( y ∣ x ) p(y|x) p(yx)为传感器模型,也就是在不同的状态 x x x下的观测值 y y y的PDF
【先验概率】 p ( x ) p(x) p(x)为状态 x x x本身的PDF
p ( y ) p(y) p(y)是传感器观测值本身的PDF,一般很难直接计算

p ( x ) p(x) p(x)若看做是均匀分布,也就说在某次观测中,不考虑观测值,直接去猜测状态量,那么所有状态量出现的可能性都是一样多的。但在实践中,某次观测的状态量往往与上次的状态量相关,因此 p ( x ) p(x) p(x)并不是均匀分布的。

独立与相关

在这里插入图片描述
所谓不相关就是不线性相关。

归一化积

在这里插入图片描述

香农信息与互信息

在这里插入图片描述

3. 高斯概率密度函数

在这里插入图片描述
在这里插入图片描述
协方差矩阵为对称正定矩阵,但是估计出来的协方差不能保证正定性

注意到,在一维高斯分布中,取某条等概率线,它将穿过概率曲线的两个点,这两个点以均值所在竖直线为中心线,并且据该条中心线距离都为 σ \sigma σ。也就说 σ \sigma σ决定了等概率线上的点距均值的距离。

同理,在多维高斯分布的情况下,取等概率面,我们将得到一个椭圆,协方差矩阵 Σ \Sigma Σ决定了椭圆上的点与椭圆的距离,即椭圆的形状。在各个随机变量的边缘分布的方差都相等的情况下,椭圆退化为圆。

一维高斯分布中全概率公式证明:

(摘自陈希孺《概率论与数理统计》)
在这里插入图片描述
在这里插入图片描述
在最后一步极坐标换元操作中,需要对原积分公式的3处进行替换:(1)被积分的表达式,这个是显然的;(2)积分上下界;(3) d t d u dt du dtdu替换为 r d r d θ rdrd\theta rdrdθ

第(3)步值得说道一下。
直接地,分别求出

再将它们直接相乘会得到错误的结果,原因是 d t dt dt d u du du等符号比较特殊,不能看做单纯的变量,再深入问为什么我也不知道了。

因此,一般会采用雅克比矩阵来进行换元,暂且记住它吧。
在这里插入图片描述

高斯推断/边缘化-联合高斯分布

在这里插入图片描述
我们希望利用前面所说的贝叶斯公式:
在这里插入图片描述
在已知联合分布和边缘分布的情况下推导出条件分布。我们需要求出条件分布的均值和协方差矩阵。这就要求我们把 p ( x , y ) p(x,y) p(x,y)的协方差矩阵的逆拆成块状,以便于我们把它的随机变量中的 x x x部分和 y y y部分分离出来。下面会进行详细解释。

分块矩阵打洞:

第一种方式:
在这里插入图片描述
其中, D − C A − 1 B D-CA^{-1}B DCA1B叫做 A A A的舒尔补(Schur Complement)。

第二种方式:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
其中, A − B D − 1 C A-BD^{-1}C ABD1C叫做 D D D的舒尔补(Schur Complement)。

进一步地,为了呈现课程PPT中的形式,把第二种方式左侧两个操作矩阵取逆放到右侧,有
在这里插入图片描述
再把公式左右两侧都取逆,有
在这里插入图片描述
把上述示例矩阵替换为协方差矩阵,就可以得到以下的形式:
在这里插入图片描述
这么做的目的是,为了可以把大的联合的协方差的矩阵的求逆转换为一个新矩阵内部的分块的求逆,便于代入高斯密度函数中的二次型,即 ( x − μ ) T Σ − 1 ( x − μ ) (x-\mu)^T\Sigma^{-1}(x-\mu) (xμ)TΣ1(xμ),如下:
在这里插入图片描述
上述的二次型同时包含了期望和协方差信息,也就是高斯分布的全部信息了。

我们上面了做了这么多工作的目的是进行边缘化,也就是把条件概率密度函数从联合概率密度函数中分离出来,依据以下公式:
p ( x , y ) = p ( x ∣ y ) p ( y ) p(x,y) = p(x|y)p(y) p(x,y)=p(xy)p(y)
由于二次型包含了高斯分布的全部信息,因此我们只需要在二次型中把 p ( x ∣ y ) p(x|y) p(xy) p ( y ) p(y) p(y)的期望和协方差分离出来就行。借助上面的矩阵打洞,我们把 p ( x , y ) p(x,y) p(x,y)的协方差的逆顺利拆散了,并进行分离。
在这里插入图片描述在这里插入图片描述

高斯分布的变换

(1)线性变换
在这里插入图片描述
在这里插入图片描述
线性变换前,随机变量服从高斯分布,则线性变换后仍然服从线性变换。

(2)非线性变换
非线性变换的情况下,得到的 p ( x ) p(x) p(x)不服从高斯分布。
在这里插入图片描述
举个标量的例子:
在这里插入图片描述
我觉得这里的推导比较玄学…
线性化
在这里插入图片描述
一维情况下的例子:
在这里插入图片描述
下面的推导非常难,反正我没看懂:
在这里插入图片描述
在这里插入图片描述

高斯分布的不相关性等价于独立性

在这里插入图片描述

归一化积

在这里插入图片描述

4个SMW恒等式

其实仍然是矩阵填洞,只是把两种不同的填洞方法给等价起来。
在这里插入图片描述
在这里插入图片描述
(1+3个相乘)的逆
(1+3个相乘)的逆再乘(2个相乘)

  • 4
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值