状态估计第一讲:概述与基础知识

来源:深蓝学院《机器人学中的状态估计》

状态估计简介

状态估计在自动控制系统里的作用:
状态估计的作用
• 状态估计,是根据系统的先验模型和测量序列,对系统内在状态进行重构的问题

概率密度函数

我们定义x为区间[a,b]上的随机变量,服从某个概率密度函数p(x),那么这个非负函数必然满足:
∫ a b p ( x ) d x = 1 \mathop{ \int }\nolimits_{{a}}^{{b}}p{ \left( {x} \right) } \text{d} x=1 abp(x)dx=1
随机变量在在某区间的积分即为概率:
P r ( c < = x < = d ) = ∫ c d p ( x ) d x Pr(c<=x<=d)=\mathop{ \int }\nolimits_{{c}}^{{d}}p{ \left( {x} \right) } \text{d} x Pr(c<=x<=d)=cdp(x)dx
• 条件概率:
( ∀ y ) , P r ( c < = x < = d ) = ∫ c d p ( x ∣ y ) d x ({\forall}y),Pr(c<=x<=d)=\mathop{ \int }\nolimits_{{c}}^{{d}}p{ \left( {x|y} \right) } \text{d} x (y),Pr(c<=x<=d)=cdp(xy)dx
• 联合概率:
p ( x 1 , x 2 , x 3 … … x N ) p{ \left( {x_1,x_2,x_3……x_N} \right) } p(x1,x2,x3xN)
联合概率也满足全概率公理:
∫ a b p ( x ) d x = ∫ a N b N … ∫ a 2 b 2 ∫ a 1 b 1 p ( x 1 , x 2 … … x N ) d x 1 d x 2 … d x N \mathop{ \int }\nolimits_{{a}}^{{b}}p{ \left( {x} \right) } \text{d} x=\mathop{ \int }\nolimits_{{a_N}}^{{b_N}}…\mathop{ \int }\nolimits_{{a_2}}^{{b_2}}\mathop{ \int }\nolimits_{{a_1}}^{{b_1}}p{ \left( {x_1,x_2……x_N} \right) }\text{d} x_1\text{d} x_2…\text{d} x_N abp(x)dx=aNbNa2b2a1b1p(x1,x2xN)dx1dx2dxN
• 贝叶斯公式:
联合=条件*边缘
p ( x , y ) = p ( x ∣ y ) ∗ p ( y ) = p ( y ∣ x ) ∗ p ( x ) p{ \left( {x,y} \right) }=p{ \left( {x|y} \right) }*p{ \left( {y} \right) }=p{ \left( {y|x} \right) }*p{ \left( {x} \right) } p(x,y)=p(xy)p(y)=p(yx)p(x)
p ( x ∣ y ) = p ( y ∣ x ) ∗ p ( x ) p ( y ) p{ \left( {x|y} \right) }=\frac{p{ \left( {y|x} \right) }*p{ \left( {x} \right) }}{p{ \left( {y} \right) }} p(xy)=p(y)p(yx)p(x)
• 赋予该式物理意义:x=状态,y=传感器读数,p(y|x)=传感器模型,p(x|y)=状态估计
• 矩(moments):
• 0阶矩恒等于1
• 1阶矩称为期望(Expectation)
• 2阶矩称为协方差(Covariance)
• 3阶和4阶称为偏度(skewness)和峰度(kurtosis)
• 随机变量的统计独立性:
随机变量x,y满足: p ( x , y ) = p ( x ) p ( y ) p(x,y)=p(x)p(y) p(x,y)=p(x)p(y)
• 随机变量不相关性:
E [ x y T ] = E [ x ] E [ y ] T E[xy^T]=E[x]E[y]^T E[xyT]=E[x]E[y]T
• 独立性可推出不相关性,反之不行
• 对于高斯分布来说,独立性=不相关性
• 归一化积:
融合多个概率分布的时候需要用到归一化积,若 p 1 ( x ) p_1(x) p1(x) p 2 ( x ) p_2(x) p2(x)是关于x的两个分布,那么它们的归一化积为:
p ( x ) = η p 1 ( x ) p 2 ( x ) p(x)=\eta p_1(x)p_2(x) p(x)=ηp1(x)p2(x), η \eta η是归一化因子,使得概率积分为1。

高斯概率密度函数

• 一维高斯概率分布:
p ( x ∣ μ , δ ) = 1 2 π δ 2 exp ⁡ ( − 1 2 ( x − μ ) 2 δ 2 ) p(x|\mu,\delta)=\frac {1}{\sqrt{2\pi\delta^2}}\exp(-\frac{1}{2}\frac{(x-\mu)^2}{\delta^2}) p(xμ,δ)=2πδ2 1exp(21δ2(xμ)2)
高斯分布
• 联合高斯分布:
p ( x , y ) = N ( [ μ x μ y ] , [ σ x x σ x y σ y x σ y y ] ) p(x,y)=N(\left[ \begin{matrix} \mu_x \\ \mu_y \end{matrix} \right],\left[ \begin{matrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{matrix} \right]) p(x,y)=N([μxμy],[σxxσyxσxyσyy])
• 高斯推断:
对联合概率分布的协方差矩阵进行三角化然后求逆可得:

[ σ x x σ x y σ y x σ y y ] = [ 1 σ x y σ y y − 1 0 1 ] [ σ x x − σ x y σ y y − 1 σ y x 0 0 σ y y ] [ 1 0 σ y y − 1 σ y x 1 ] \left[ \begin{matrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{matrix} \right]=\left[ \begin{matrix} 1 & \sigma_{xy}\sigma_{yy}^{-1} \\ 0 & 1 \end{matrix} \right]\left[ \begin{matrix} \sigma_{xx}-\sigma_{xy}\sigma_{yy}^{-1} \sigma_{yx}& 0 \\ 0 & \sigma_{yy} \end{matrix} \right]\left[ \begin{matrix} 1 & 0 \\ \sigma_{yy}^{-1}\sigma_{yx} & 1 \end{matrix} \right] [σxxσyxσxyσyy]=[10σxyσyy11][σxxσxyσyy1σyx00σyy][1σyy1σyx01]
两边求逆:
[ σ x x σ x y σ y x σ y y ] − 1 = [ 1 0 − σ y x σ y y − 1 1 ] [ [ σ x x − σ x y σ y y − 1 σ y x ] − 1 0 0 σ y y − 1 ] [ 1 − σ y y − 1 σ x y 0 1 ] \left[ \begin{matrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{matrix} \right]^{-1}=\left[ \begin{matrix} 1 & 0\\ -\sigma_{yx}\sigma_{yy}^{-1} & 1 \end{matrix} \right]\left[ \begin{matrix} {[\sigma_{xx}-\sigma_{xy}\sigma_{yy}^{-1} \sigma_{yx}]}^{-1}& 0 \\ 0 & \sigma_{yy}^{-1} \end{matrix} \right]\left[ \begin{matrix} 1 & -\sigma_{yy}^{-1}\sigma_{xy} \\ 0 & 1 \end{matrix} \right] [σxxσyxσxyσyy]1=[1σyxσyy101][[σxxσxyσyy1σyx]100σyy1][10σyy1σxy1]
高斯推断1
高斯推断2
• 高斯分布的独立性和不相关性: 互相等价
• 高斯分布的线性变换:
高斯分布x~ N ( μ x , σ x x ) N(\mu_x,\sigma_{xx}) N(μx,σxx)
y=Gx,则y分布为:
y~ N ( G μ x , G μ x x G T ) N(G\mu_x,G\mu_{xx}G^T) N(Gμx,GμxxGT)
• 高斯分布的归一化积高斯分布归一化积
• 高斯分布的非线性变换:
高斯分布x~ N ( μ x , σ x x ) N(\mu_x,\sigma_{xx}) N(μx,σxx)
y=g(x)为非线性变换,则y分布为:
p ( y ∣ x ) p(y|x) p(yx)~ N ( g ( x ) , R ) N(g(x),R) N(g(x),R),g为非线性变换,且受到噪声R干扰,在 μ x \mu_x μx处对g进行线性化可得:
g ( x ) ≈ μ y + G ( x − μ x ) g(x)\approx\mu_y+G(x-\mu_x) g(x)μy+G(xμx),G为g(x)在 x = μ x x=\mu_x x=μx处的雅克比矩阵,最后可得:
y~ N ( g ( x ) , R + G σ x x G T ) N(g(x),R+G\sigma_{xx}G^T) N(g(x),R+GσxxGT)
• 高斯过程:
非常烧脑,提供一些资料如下:
高斯过程在连续时间SLAM与运动规划中的应用
图文详解高斯过程

  • 0
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
作者:Timothy D. Barfoot ,最新2018高清资源,完整395页,持续更新。 版权归作者所有,任何形式转载请联系作者。 State Estimation for Robotics早已在SLAM领域广为流传,几乎是SLAM入门必读的经典书籍之一。本书深入解了状态估计的机理、三维几何学基础、矩阵李群以及位姿和点的估计方法等,尤其对基于滤波器的状态估计方法的介绍全面深刻。现在在高翔、颜沁睿、刘富强等十多位SLAM专家、爱好者的共同努力下,中文译本《机器人学中的状态估计》也终于得以面世。这对于国内广大SLAM爱好者来说,可谓一大福音,值得隆重推荐。 ——浙江大学教授,CAD & CG国家重点实验室计算机视觉团队带头人,章国锋 State Estimation for Robotics是加拿大多伦多大学Barfoot教授的名著,也是机器人方向的经典教材之一。该书侧重数学基础,先花了三分之二的篇幅来介绍概率、几何方面的基础知识,最后又回到应用问题,详细介绍了基于点云和图像的姿态估计。 这是一本难得的既注重基础又顾及前沿研究问题的教材。书的译者是一群对机器人技术富有激情的年轻人,他们中的许多人在计算机视觉、机器人等科研领域开始崭露头角。这本译作倾注了他们的满腔热忱和对国内技术发展的期望。 ——加拿大西蒙弗雷泽大学终身教授,谭平 本书介绍了机器人领域的重要核心技术——状态估计。这本书不只介绍了一些传统的经典算法,也涉及了最新的行业进展和应用,同时还传授了一些基础的数学工具。本书使用严谨的数学语言,同时又深入浅出,是初学者不可多得的良师益友。 ——自动驾驶公司AutoX创始人,原美国普林斯顿大学计算机视觉与机器人实验室主任,麻省理工学院博士 肖健雄

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值