g2o的基本框架结构
-
图的核心
SparseOptimizer是整个图的核心,SparseOptimizer它是一个Optimizable Graph,从而也是一个超图(HyperGraph) -
顶点和边
这个超图包含了许多顶点(HyperGraph::Vertex)和边(HyperGraph::Edge)。而这些顶点顶点继承自 Base Vertex,也就是OptimizableGraph::Vertex,而边可以继承自 BaseUnaryEdge(单边), BaseBinaryEdge(双边)或BaseMultiEdge(多边),它们都叫做OptimizableGraph::Edge -
配置SparseOptimizer的优化算法和求解器
整个图的核心SparseOptimizer 包含一个优化算法(OptimizationAlgorithm)的对象。OptimizationAlgorithm是通过OptimizationWithHessian 来实现的。其中迭代策略可以从Gauss-Newton(高斯牛顿法,简称GN), Levernberg-Marquardt(简称LM法), Powell’s dogleg 三者中间选择一个(我们常用的是GN和LM)GN和LM就是我们以前讲过的非线性优化方法中常用的两种吧
-
如何求解
OptimizationWithHessian 内部包含一个求解器(Solver),这个Solver实际是由一个BlockSolver组成的。这个BlockSolver有两个部分,一个是SparseBlockMatrix ,用于计算稀疏的雅可比和Hessian矩阵;一个是线性方程的求解器(LinearSolver),它用于计算迭代过程中最关键的一步HΔx=−b,LinearSolver有几种方法可以选择:PCG, CSparse, Choldmod,具体定义后面会介绍
g2o编程流程
typedef g2o::BlockSolver< g2o::BlockSolverTraits<3,1> > Block; // 每个误差项优化变量维度为3,误差值维度为1
// 第1步:创建一个线性求解器LinearSolver
Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense<Block::PoseMatrixType>();
// 第2步:创建BlockSolver。并用上面定义的线性求解器初始化
Block* solver_ptr = new Block( linearSolver );
// 第3步:创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( solver_ptr );
// 第4步:创建终极大boss 稀疏优化器(SparseOptimizer)
g2o::SparseOptimizer optimizer; // 图模型
optimizer.setAlgorithm( solver ); // 设置求解器
optimizer.setVerbose( true ); // 打开调试输出
// 第5步:定义图的顶点和边。并添加到SparseOptimizer中
CurveFittingVertex* v = new CurveFittingVertex(); //往图中增加顶点
v->setEstimate( Eigen::Vector3d(0,0,0) );
v->setId(0);
optimizer.addVertex( v );
for ( int i=0; i<N; i++ ) // 往图中增加边
{
CurveFittingEdge* edge = new CurveFittingEdge( x_data[i] );
edge->setId(i);
edge->setVertex( 0, v ); // 设置连接的顶点
edge->setMeasurement( y_data[i] ); // 观测数值
edge->setInformation( Eigen::Matrix<double,1,1>::Identity()*1/(w_sigma*w_sigma) ); // 信息矩阵:协方差矩阵之逆
optimizer.addEdge( edge );
}
// 第6步:设置优化参数,开始执行优化
optimizer.initializeOptimization();
optimizer.optimize(100);
- 创建一个线性求解器LinearSolver
增量方程的形式是:H△X=-b,通常情况下想到的方法就是直接求逆,也就是△X=-H.inv*b。看起来好像很简单,但这有个前提,就是H的维度较小,此时只需要矩阵的求逆就能解决问题。但是当H的维度较大时,矩阵求逆变得很困难,求解问题也变得很复杂。
需要一些特殊的方法对矩阵进行求逆:https://github.com/RainerKuemmerle/g2o/tree/master/g2o/solvers
LinearSolverCholmod :使用sparse cholesky分解法。继承自LinearSolverCCS
LinearSolverCSparse:使用CSparse法。继承自LinearSolverCCS
LinearSolverPCG :使用preconditioned conjugate gradient 法,继承自LinearSolver
LinearSolverDense :使用dense cholesky分解法。继承自LinearSolver
LinearSolverEigen: 依赖项只有eigen,使用eigen中sparse Cholesky 求解,因此编译好后可以方便的在其他地方使用,性能和CSparse差不多。继承自LinearSolver
- 创建BlockSolver。并用上面定义的线性求解器初始化。
BlockSolver 内部包含 LinearSolver,用上面我们定义的线性求解器LinearSolver来初始化。它的定义在如下文件夹内:
BlockSolver有两种定义方式:
//固定变量的solver
//p代表pose的维度(注意一定是流形manifold下的最小表示),l表示landmark的维度
using BlockSolverPL = BlockSolver< BlockSolverTraits<p, l> >;
//可变尺寸的solver
//在某些应用场景,我们的Pose和Landmark在程序开始时并不能确定
using BlockSolverX = BlockSolverPL<Eigen::Dynamic, Eigen::Dynamic>;
- 创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
// 梯度下降方法,从GN, LM, DogLeg 中选
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( solver_ptr );
// g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr );
// g2o::OptimizationAlgorithmDogleg* solver = new g2o::OptimizationAlgorithmDogleg( solver_ptr );
- 创建终极大boss 稀疏优化器(SparseOptimizer),并用已定义求解器作为求解方法。
//创建稀疏优化器
g2o::SparseOptimizer optimizer;
//用前面定义好的求解器作为求解方法:
optimizer.setAlgorithm( solver ); // 设置求解器
//setVerbose是设置优化过程输出信息用的
optimizer.setVerbose( true ); // 打开调试输出
5. 定义图的顶点和边。并添加到SparseOptimizer中。
g2o定义顶点:https://blog.csdn.net/weixin_42905141/article/details/100827638
g2o定义边:https://blog.csdn.net/weixin_42905141/article/details/100830126
- 设置优化参数,开始执行优化。
// 执行优化前的初始化
//SparseOptimizer::initializeOptimization(HyperGraph::EdgeSet& eset)
optimizer.initializeOptimization();
开始执行优化,并设置迭代次数
//SparseOptimizer::optimize(int iterations, bool online)
optimizer.optimize(100);