毫米波雷达slam论文汇总

文章探讨了旋转雷达在导航中的运动失真和多普勒效应问题,以及2023年提出的4D雷达SLAM系统,它利用4D数据进行大范围环境建图,强调了毫米波雷达在恶劣天气下的优势。研究还展示了如何通过概率分布和循环检测技术改进姿态估计的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2021

Do We Need to Compensate for Motion Distortion and Doppler Effects in Spinning Radar Navigation?

code: https://github.com/keenan-burnett/yeti radar odometry
摘要: 为了应对雨雪等不利天气条件的挑战,雷达正在作为与视觉和激光雷达平行的一种传感方式被重新访问。近年来,旋转雷达在应用于测速和位置识别方面取得了巨大的进展。然而,这些工作迄今为止忽略了运动失真和多普勒效应对基于旋转雷达的导航的影响,这可能在自动驾驶汽车的高速领域具有重要意义。在这项工作中,我们使用牛津雷达机器人汽车数据集和使用我们自己的数据采集平台,演示了这些畸变对雷达测程法的影响。我们重新审视一个轻量级估计器,它可以恢复一对雷达扫描之间的运动,同时考虑这两种影响。我们的结论是,运动畸变和多普勒效应在旋转雷达导航的不同方面都很显著,前者比后者更突出。
在这里插入图片描述
在这里插入图片描述

2023

ORORA: Outlier-Robust Radar Odometry

code: https://github.com/gisbi-kim/navtech-radar-slam
摘要:雷达传感器正在成为在极端天气条件下感知周围环境和估计自我运动的解决方案。不幸的是,雷达测量噪声大,相互干扰,降低了特征提取和匹配的性能,触发了不精确的匹配对,称为离群值。为了解决离群值对雷达测程的影响,提出了一种新的离群鲁棒方法ORORA,它是离群-反反radar测程的缩写。为此,提出了一种新的基于解耦的方法,该方法包括基于分级非凸性(GNC)的旋转估计和各向异性分量平移估计(A-COTE)。此外,我们的方法利用了雷达测量的各向异性特性,其沿方位角方向的不确定度都略大于沿径向方向的不确定度。在公共数据集中的验证表明,与其他最先进的方法相比,我们提出的方法具有鲁棒性的自我运动估计性能。
在这里插入图片描述

4DRadarSLAM: A 4D Imaging Radar SLAM System for Large-scale Environments based on Pose Graph Optimization

code: https://github.com/zhuge2333/4DRadarSLAM

摘要:基于激光雷达的SLAM在不利天气(如雨、雪、烟雾、雾)中很容易失效,而mmWave雷达则不受影响。然而,目前的研究主要集中在2D(x、y)或3D(x、y、多普勒)雷达和3D激光雷达上,而4D雷达(x、y、z、多普勒)的工作有限。4D雷达作为具有独特特征的市场新入口,输出三维点云,而不是2D点云;与3D激光雷达相比,四维雷达具有噪声更稀疏的点云,使得提取几何特征(边缘和平面)更具挑战性。在本文中,我们提出了一个由三个模块组成的四维雷达测距系统: 1)前端模块进行扫描到扫描匹配计算测程,考虑每个点的概率分布;2)循环检测采用多个基于规则的循环预过滤步骤,然后采用强度扫描上下文步骤识别循环候选者,测程检查拒绝假循环;3)后端使用前端测程、循环闭合和可选的GPS数据构建姿态图。通过g2o获得最佳姿态。我们在两个平台和五个数据集(从240米到4.8公里)上进行了真实的实验。

在这里插入图片描述

TBV Radar SLAM – trust but verify loop candidates

code: https://github.com/dan11003/tbv_slam_public
摘要:大规模环境中的鲁棒SLAM需要在从传感和测程估计到环路闭合的多个阶段实现故障弹性和感知。在这项工作中,我们提出了TBV(信任但验证)雷达SLAM,一种雷达SLAM的方法,深入验证候选环路闭合。TBV Radar SLAM通过结合多种位置识别技术的正确循环检索率:紧密耦合的位置相似性和测程不确定性搜索,从原点移位扫描创建循环描述符,并在验证后延迟循环选择,实现了较高的正确循环检索率。通过仔细验证和从多个循环约束中选择最有可能的约束,可以实现对错误约束的鲁棒性。重要的是,验证和选择是在可以很容易地计算出额外的循环证据来源时,在注册后进行的。我们将我们的循环检索和验证方法与一个强大的鲁棒测程管道集成在一个姿态图框架内。通过对公共基准测试的评估,我们发现TBV雷达SLAM的误差比之前的技术水平低了65%。我们还展示了它可以跨环境进行推广,而不需要更改任何参数。
在这里插入图片描述
在这里插入图片描述

<think>好的,我现在需要帮助用户了解毫米波雷达SLAM中的应用或实现方法。首先,我得回忆一下毫米波雷达的基本原理和SLAM的基本概念。毫米波雷达使用毫米波段的电磁波,通常频率在30-300GHz,具有较好的穿透性和分辨率,适合在恶劣天气下工作。而SLAM是同时定位与建图的技术,常见于机器人、自动驾驶等领域。 接下来,用户可能想知道毫米波雷达SLAM中的具体应用场景和实现方法。根据提供的引用,特别是引用[3]和引用[4],里面提到了毫米波雷达的原理、定位与建图算法,以及与其他传感器如激光雷达的对比。需要结合这些信息来组织回答。 首先,毫米波雷达SLAM中的优势可能包括其测速能力和环境适应性。例如,毫米波雷达可以直接测量目标的速度(通过多普勒效应),这对于动态环境下的定位很有帮助。另外,引用[3]提到了贝叶斯滤波、粒子滤波等方法,这些可能用于处理毫米波雷达的数据。 然后,实现方法部分需要分步骤讲解。可能需要包括信号处理、数据关联、状态估计和地图构建等步骤。信号处理方面,毫米波雷达的线性调频信号(如引用[3]所述)用于距离和速度估计。数据关联可能涉及匹配当前观测与地图中的特征。状态估计可能使用卡尔曼滤波或粒子滤波,而地图构建可能使用栅格地图或特征地图。 应用场景方面,自动驾驶和工业机器人是主要领域。引用[1]提到随着算法进步,毫米波雷达应用会更广泛。需要举出具体例子,比如在自动驾驶中的实时障碍物检测和建图。 挑战部分,毫米波雷达的分辨率可能不如激光雷达,引用[4]提到激光雷达的测距方式,对比之下毫米波雷达可能在细节建图上存在不足。此外,多路径反射和动态物体处理也是难点。 最后,相关问题的生成需要围绕实现细节、对比其他传感器、动态环境处理、算法优化以及实际案例。这些问题应引导用户进一步探索。 需要确保回答结构清晰,分点说明,并正确引用提供的资料。同时,检查是否符合用户要求的格式,如数学表达式的使用和引用标识的位置。</think>### 毫米波雷达SLAM中的应用与实现方法 #### 1. **毫米波雷达SLAM中的优势** - **高环境适应性**:毫米波雷达(如4D雷达)能穿透雨、雾和灰尘,适用于复杂天气条件下的定位与建图[^1][^3]。 - **速度直接测量**:通过多普勒效应,可直接获取目标物体的径向速度,辅助动态环境下的运动估计。 - **成本与体积优势**:相比激光雷达,毫米波雷达成本更低且更易集成到小型设备中[^4]。 #### 2. **实现方法的关键步骤** - **信号处理**: 毫米波雷达发射线性调频信号(LFM),接收回波后通过傅里叶变换提取目标距离和速度。例如,距离分辨率由带宽决定: $$ \Delta R = \frac{c}{2B} $$ 其中$c$为光速,$B$为信号带宽。 - **数据关联与特征提取**: 将雷达点云聚类为静态物体(如墙壁、柱子)和动态物体,提取角反射器等稳定特征用于地图匹配。 - **状态估计(定位)**: 使用贝叶斯滤波或粒子滤波融合雷达观测与运动模型。例如,粒子滤波通过权重更新公式: $$ w_t^{(i)} = w_{t-1}^{(i)} \cdot p(z_t | x_t^{(i)}) $$ 结合多普勒速度信息可优化粒子分布。 - **地图构建**: 生成占据栅格地图或特征地图。毫米波雷达的低分辨率需通过多帧数据融合提升地图精度。 #### 3. **典型应用场景** - **自动驾驶**:用于高速场景下的实时障碍物检测与建图,结合IMU和轮式里程计实现鲁棒定位[^1]。 - **工业机器人**:在仓储物流中,通过多雷达协同构建室内环境地图,支持AGV导航。 #### 4. **挑战与解决方案** - **低角分辨率**:采用多雷达阵列或与视觉传感器融合,提升横向定位精度[^1]。 - **多路径干扰**:通过机器学习算法区分真实目标与虚假回波。 - **动态物体处理**:结合多普勒信息分离动静态点云,仅用静态特征建图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点PY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值