李群与李代数的推导

本文深入探讨了李群与李代数之间的转换关系,特别关注于SO(3)和SE(3)及其对应的李代数so(3)和se(3)。文章详细介绍了指数映射和对数映射的数学表达,以及李群乘法与李代数加法之间的关系。此外,还讨论了在视觉SLAM中如何利用这些理论求解相机位姿的最小二乘问题。
摘要由CSDN通过智能技术生成

1 李群与李代数的转换关系

本文主要对特殊正交矩阵SO(3)特殊欧式群SE(3) 以及其对应的李代数进行讨论。

1.1 已知条件

假设已知李群与李代数之间的指数映射关系:
SO(3)和so(3)
R = e x p ( ϕ ∧ ) R = exp(\phi^{\wedge}) R=exp(ϕ)
其中 R R R为李群(3阶矩阵),在此处的物理意义可以表示为旋转矩阵; ϕ \phi ϕ为李代数(3维向量),此处的物理意义可以表示为旋转向量。
SE(3)和se(3)
T = e x p ( ξ ∧ ) 其 中 ξ = [ ρ , ϕ ] T = [ R t 0 T 1 ] = [ e x p ( ϕ ∧ ) J ρ 0 T 1 ] T = exp(\xi^{\wedge})其中\xi = [\rho,\phi]\\T = \begin{bmatrix} R&t\\ 0^T&1 \end{bmatrix}= \begin{bmatrix} exp(\phi ^{\wedge})& J\rho\\ 0^T&1 \end{bmatrix} T=exp(ξ)ξ=[ρ,ϕ]T=[R0Tt1]=[exp(ϕ)0TJρ1]
其中,T为李群,在此处表示为变换矩阵(4阶矩阵); ξ \xi ξ为李代数(6维向量),它由表示平移部分的 ρ \rho ρ(3维向量)和表示旋转的 ϕ \phi ϕ(3维向量)组成, ϕ \phi ϕ可以分解为 θ \theta θ a \bf{a} a,其中 θ \theta θ为旋转角度, a \bf{a} a为单位向量,表示旋转轴。同时, R 和 T R和T RT在李群上的关系如上所示,变换矩阵 T T T由旋转矩阵 R R R和平移向量 t t t组成。

1.2 李群对数映射到李代数

SO(3) ⇒ \Rightarrow so(3)

已知条件: R R R
求解参数: ϕ \phi ϕ( θ 和 a \theta和\bf{a} θa)
R ⇓ θ = a r c c o s ( T r ( R ) − 1 2 ) R a = a ⇓ ϕ = θ a R\\ \Downarrow\\ \theta = arccos(\frac{Tr(R)-1}{2})\\ {R\bf{a} = \bf{a}} \\ \Downarrow\\ \phi = \theta \bf{a} Rθ=arccos(2Tr(R)1)Ra=aϕ=θa

SE(3) ⇒ \Rightarrow se(3)

已知条件: T ( R 和 t ) T(R和t) T(Rt)
求解参数: ξ ( ρ 和 ϕ ) \xi(\rho和\phi) ξ(ρϕ)
R , t ⇓ θ = a r c c o s ( T r ( R ) − 1 2 ) R a = a ⇓ ϕ = θ a J = s i n θ θ I + ( 1 − s i n θ θ ) a a T + 1 − c o s θ θ a ∧ ρ = J − 1 t R,t\\ \Downarrow \\ \theta = arccos(\frac{Tr(R)-1}{2})\\ {R\bf{a} = \bf{a}} \\ \Downarrow\\ {\phi = \theta \bf{a}}\\ {J = \frac{sin\theta}{\theta}I +(1-\frac{sin\theta}{\theta})\bf{a}\bf{a}^T+\frac{1-cos\theta}{\theta}{\bf{a}}^{\wedge}}\\ \rho = J^{-1}t R,tθ=arccos(2Tr(R)1)Ra=aϕ=θaJ=θsinθI+(1θsinθ)aaT+θ1cosθaρ=J1t

1.3 李代数指数映射到李群

so(3) ⇒ \Rightarrow SO(3)

已知条件: ϕ \phi ϕ( θ 和 a \theta和\bf{a} θa)
求解参数: R R R
ϕ ( θ 和 a ) ⇓ R = e x p ( ϕ ∧ ) = e x p ( θ a ∧ ) = c o s θ I + ( 1 − c o s θ ) a a T + s i n θ a ∧ {\phi(\theta和\bf{a})}\\ \Downarrow\\ R = exp(\phi^{\wedge})= exp(\theta \bf{a}^{\wedge})=cos\theta I+(1-cos\theta)\bf{a}\bf{a}^T+sin\theta \bf{a}^{\wedge} ϕ(θa)R=exp(ϕ)=exp(θa)=cosθI+(1cosθ)aaT+sinθa

se(3) ⇒ \Rightarrow SE(3)

已知条件: ξ ( ρ 和 ϕ ) \xi(\rho和\phi) ξ(ρϕ)
求解参数: R 和 T R和T RT
ϕ ( θ 和 a ) ⇓ R = e x p ( ϕ ∧ ) = e x p ( θ a ∧ ) = c o s θ I + ( 1 − c o s θ ) a a T + s i n θ a ∧ J = s i n θ θ I + ( 1 − s i n θ θ ) a a T + 1 − c o s θ θ a ∧ t = J ρ ⇓ T = = [ R t 0 T 1 ] {\phi(\theta和\bf{a})}\\ \Downarrow\\ {R = exp(\phi^{\wedge})= exp(\theta \bf{a}^{\wedge})=cos\theta I+(1-cos\theta)\bf{a}\bf{a}^T+sin\theta \bf{a}^{\wedge}}\\ {J = \frac{sin\theta}{\theta}I +(1-\frac{sin\theta}{\theta})\bf{a}\bf{a}^T+\frac{1-cos\theta}{\theta}{\bf{a}}^{\wedge}}\\ t = J\rho\\ \Downarrow\\ T== \begin{bmatrix} R&t\\ 0^T&1 \end{bmatrix} ϕ(θa)R=exp(ϕ)=exp(θa)=cosθI+(1cosθ)aaT+sinθaJ=θsinθI+(1θsinθ)aaT+θ1cosθat=JρT==[R0Tt1]

2 李群乘法与李代数加法的关系

由于旋转矩阵所在的李群,虽然定义了良好的乘法操作,但是没有加法的定义,因此很难对旋转矩阵取极限和求导。根据李群与李代数之间的指数和对数映射关系,能否将SO(3)上的乘法对应到so(3)上的加法。由于映射的元素为矩阵,假设:
R 1 = e x p ( ϕ 1 ∧ ) R 2 = e x p ( ϕ 2 ∧ ) R 1 R 2 ≠ e x p ( ( ϕ 1 + ϕ 2 ) ∧ ) R_1 = exp(\phi _1^{\wedge})\\R_2 = exp(\phi _2^{\wedge})\\ R_1 R_2 \neq exp((\phi _1 + \phi _2)^{\wedge}) R1=exp(ϕ1)R2=exp(ϕ2)R1R2=exp((ϕ1+ϕ2))
但是根据BCH(Baker-Campbell-Hausdorff)公式可以推断出,李群乘法与李代数加法之间的关系:
假定对某个旋转 R R R,对应李代数为 ϕ \phi ϕ。此时在 R R R的基础上左乘一个微小的旋转 Δ R \Delta R ΔR,对应在李代数上为: Δ ϕ \Delta \phi Δϕ

在李群上,结果 Δ R . R \Delta R .R ΔR.R
在李代数上的结果为: J l ( ϕ ) Δ ϕ + ϕ J_l(\phi)\Delta\phi + \phi Jl(ϕ)Δϕ+ϕ 而不是 Δ ϕ + ϕ \Delta\phi + \phi Δϕ+ϕ
其中:
J l ( ϕ ) = J l ( θ , a ) = s i n θ θ I + ( 1 − s i n θ θ ) a a T + 1 − c o s θ θ a ∧ {J_l(\phi) =J_l(\theta,\bf{a})= \frac{sin\theta}{\theta}I +(1-\frac{sin\theta}{\theta})\bf{a}\bf{a}^T+\frac{1-cos\theta}{\theta}{\bf{a}}^{\wedge}} Jl(ϕ)=Jl(θ,a)=θsinθI+(1θsinθ)aaT+θ1cosθa

同理,若在李代数上进行加法操作的结果: Δ ϕ + ϕ \Delta\phi + \phi Δϕ+ϕ
则对应到李群上的操作的结果为: e x p ( ( J l Δ ϕ ) ∧ ) . e x p ( ϕ ∧ ) exp((J_l \Delta\phi)^{\wedge}).exp(\phi^{\wedge}) exp((JlΔϕ)).exp(ϕ)或者 e x p ( ϕ ∧ ) . e x p ( ( J r Δ ϕ ) ∧ ) exp(\phi^{\wedge}).exp((J_r \Delta\phi)^{\wedge}) exp(ϕ).exp((JrΔϕ))
其中 J r ( θ ) = J l ( − θ ) J_r(\theta) =J_l(-\theta) Jr(θ)=Jl(θ)

3 对旋转矩阵或者变换矩阵求导的物理意义

在视觉SLAM中,只要获得相机的位姿(位置和姿态),以及对应每个位姿时相机中场景的深度图,即可对场景进行拼接,完成场景的恢复即地图构建。因此如何准确获得相机在任意时刻的位姿,即定位 变得十分重要。
相机的位姿由**SO(3)上的旋转矩阵或SE(3)**上的变换矩阵描述,假设某个时刻相机的位姿为 T T T,通过观察现实世界中的点 p p p获得在图像上的观测数据 z z z。由坐标变换关系可知:
z = T p + w z = Tp+w z=Tp+w
其中, w w w为随机噪声。由于它的存在,使得 z ≠ T p z \neq Tp z=Tp
假设理想的观测值与实际数据之间的误差为:
e = z − T p e = z-Tp e=zTp
假设此刻 T T T对应的相机视图中,有 N N N个路标点和 N N N次观测,即得到 N N N个观测数据,因此就拥有了 N N N个误差值。
为了求得此刻相机最有位姿 T T T,使得整体误差最小化:
T ∗ = a r g m i n T J ( T ) = a r g m i n T ( ∑ i = 1 N ∣ ∣ z i − T p i ∣ ∣ 2 2 ) T^{*} = argmin_TJ(T) = argmin_T(\sum_{i=1}^N {||z_i-Tp_i||_2}^2) T=argminTJ(T)=argminT(i=1NziTpi22)
为了求解这个最小二乘问题,需要计算目标函数 J J J关于变换矩阵 T T T的导数。

由于李群 S O ( 3 ) 和 S E ( 3 ) SO(3)和SE(3) SO(3)SE(3)是特殊的群,它们没有定义良好的加法操作,并且矩阵收到约束。如旋转矩阵 R R R必须是正交矩阵。而李代数作为向量,并且定义了良好的加法操作。因此,可以通过李代数解决求导问题,并且可以分为两种思路:

  • 李代数表示位姿,然后根据李代数加法对李代数求导;
  • 李群左乘或右乘微小扰动,然后对该扰动求导,称为左扰动模型或者右扰动模型。
    证明过程略

结论: 相比于直接对李代数求导,利用扰动模型可以省去一个雅克比矩阵的计算,因此更加实用。

扰动模型计算结果

假设只考虑 S O ( 3 ) SO(3) SO(3)对原坐标点 p p p进行影响,原坐标点 p p p在旋转矩阵 R R R的作用下,得到旋转后的坐标点为 R p Rp Rp。计算旋转后的点 R p Rp Rp相对于旋转矩阵 R R R的导数。对 R R R进行一次扰动 Δ R \Delta R ΔR,扰动对应的李代数为 φ \varphi φ,对 φ \varphi φ进行求导即等价与直接对旋转矩阵 R R R求导。
∂ ( R p ) ∂ φ = l i m Δ R → 0 Δ R . R p − R p Δ R = l i m φ → 0 e x p ( φ ∧ ) e x p ( ϕ ∧ ) p − e x p ( ϕ ∧ ) p φ = − ( R p ) ∧ \frac{\partial(Rp)}{\partial \varphi} = lim_{\Delta R \to 0}\frac{\Delta R.Rp - Rp}{\Delta R}=\\lim_{\varphi \to 0}\frac{exp(\varphi^{\wedge})exp(\phi^{\wedge})p-{exp(\phi^{\wedge})p}}{\varphi}=-(Rp)^{\wedge} φ(Rp)=limΔR0ΔRΔR.RpRp=limφ0φexp(φ)exp(ϕ)pexp(ϕ)p=(Rp)

同理考虑 S E ( 3 ) SE(3) SE(3)对坐标点 p p p的影响,变换的坐标点 T p Tp Tp T T T求导
可以根据扰动模型,求得导数为:
[ I − ( R p + t ) ∧ 0 T 0 T ] \begin{bmatrix} I&-(Rp+t)^{\wedge}\\ 0^T&0^T \end{bmatrix} [I0T(Rp+t)0T]
该求导结果为: 4 × 6 4\times 6 4×6矩阵。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值