(2)扩散模型 Diffusion Model 1-2 扩散阶段

1、前向过程 

这样我们就可以由初始图像分布 X_{0} 直接算出某一时刻的图像分布 X_{t} 了

 

由于最后的图像 X_{T} 是基本上完全由噪声Z组成的,所以上述公式,应该是让 X_{T} 约等于 Z,这样就要求 \alpha _{T} 约等于0

2、逆向过程(Revers)

 逆向过程是一个去噪的过程,由于我们无法人工算出噪声Z,所以我们通过 Model(X_{T})= Z,来算出Z

然后再把这些Z去除就完成逆向过程了

### 使用 PyTorch Lightning 实现潜在扩散模型 潜在扩散模型 (Latent Diffusion Model, LDM) 是一种强大的生成模型,它通过学习数据的潜在表示来进行高效的图像生成和其他任务。为了简化训练过程并提高可扩展性和灵活性,可以利用 PyTorch Lightning 来构建和训练这些复杂的模型。 #### 安装依赖库 首先安装必要的 Python 库来支持项目开发: ```bash pip install pytorch-lightning torch torchvision einops omegaconf hydra-core wandb ``` #### 数据预处理模块定义 创建一个用于加载和转换输入图片的数据集类[^1]: ```python from typing import Optional import os.path as osp from PIL import Image from torch.utils.data import Dataset from torchvision.transforms.functional import to_tensor class CustomImageDataset(Dataset): def __init__(self, root_dir: str, transform=None): self.root_dir = root_dir self.transform = transform self.image_files = [ osp.join(root_dir, f) for f in sorted(os.listdir(root_dir)) if not f.startswith(".") ] def __len__(self): return len(self.image_files) def __getitem__(self, idx): img_path = self.image_files[idx] image = Image.open(img_path).convert("RGB") sample = {"image": to_tensor(image)} if self.transform: sample["image"] = self.transform(sample["image"]) return sample ``` #### 创建编码器解码器架构 接下来设计 VAE 编码器/解码器结构作为潜在空间映射工具[^2]: ```python import torch.nn as nn from torchtyping import TensorType class Encoder(nn.Module): """Encoder network that transforms an input image into a latent representation.""" def __init__( self, channels=3, z_channels=4, resolution=256, num_res_blocks=2, channel_mult=(1, 2, 4), **kwargs ): super().__init__() ... ... class Decoder(nn.Module): """Decoder network which reconstructs the original data from its compressed form""" def __init__( self, channels=3, out_ch=3, z_channels=4, resolution=256, num_res_blocks=2, channel_mult=(1, 2, 4), **kwargs ): super().__init__() ... ... ``` 由于篇幅原因省略部分细节实现,请参照官方文档完成剩余代码编写工作[^2]。 #### 扩散网络组件搭建 接着引入 U-Net 架构以促进噪声逐步去除过程中的特征传递效率提升[^3]: ```python from typing import List import torch.nn.functional as F from einops.layers.torch import Rearrange def get_timestep_embedding(timesteps, embedding_dim): half_dim = embedding_dim // 2 emb = math.log(10_000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) emb = timesteps[:, None].float() * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) if embedding_dim % 2 == 1: # zero pad emb = F.pad(emb, (0, 1)) assert emb.shape == (timesteps.shape[0], embedding_dim) return emb class UNetModel(nn.Module): def __init__(...):... ... def forward(...):... ``` 同样这里也只展示了框架性的函数声明而非具体逻辑填充[^3]。 #### 主要训练流程控制 最后借助 `LightningModule` 将上述各个部件组合起来形成完整的训练循环体[^4]: ```python import pytorch_lightning as pl from omegaconf import DictConfig from pathlib import Path import warnings warnings.filterwarnings('ignore') class LatentDiffusion(pl.LightningModule): def __init__(config: DictConfig,...): ... ... def training_step(batch, batch_idx): ... ... def configure_optimizers(): ... ... if __name__ == "__main__": config_file = "path/to/config.yaml" cfg = OmegaConf.load(config_file) dm = DataModule(...) model = LatentDiffusion(cfg.model_params) trainer = pl.Trainer( gpus=[0], max_epochs=cfg.training.max_epoches, logger=WandbLogger(project="latent-diffusion"), log_every_n_steps=10, check_val_every_n_epoch=1, callbacks=[ LearningRateMonitor(logging_interval='step'), ModelCheckpoint(dirpath=str(Path.cwd())/'checkpoints', monitor='val_loss') ] ) trainer.fit(model=model, datamodule=dm) ``` 此段脚本实现了基于配置文件读取参数设置、实例化数据管道以及初始化目标对象等功能,并调用了 Trainer 对象启动整个拟合操作序列[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值