数据科学——异常检测(Anomaly Detection)

在这里插入图片描述
异常检测,也被称为异常发现或离群点检测,是数据挖掘领域中的一个重要分支。它的目标是在数据集中识别出与大多数数据点显著不同的数据点,这些数据点被称为异常点或离群点。异常检测在许多领域都有应用,包括金融欺诈检测、网络安全、系统健康监测、信用卡欺诈检测、医疗诊断、机器故障预测等。

一、异常检测的类型

  1. 统计学基础方法:依赖于数据遵循特定统计分布的假设,异常点通常位于分布的极端尾端。
  2. 邻域亲近度法:通过衡量数据点间距离或相似性来判断异常,若某点与其邻近数据显著不同,则视为异常。
  3. 聚类分析法:通过聚类将数据分组,未被有效聚类包容的孤立点被视为异常。
  4. 分类模型法:采用机器学习分类器,直接对数据点进行正常或异常的标签分配。
  5. 重构误差法:通过数据重建技术评估原始数据与重构数据间的差异,误差显著者视为异常。

二、异常检测的步骤

  1. 数据收集:收集需要进行异常检测的数据。
  2. 数据预处理:包括数据清洗、标准化、归一化等。
  3. 特征选择:选择有助于异常检测的特征。
  4. 模型训练:使用适当的算法训练模型。
  5. 异常检测:应用模型来识别异常点。
  6. 结果分析:分析检测到的异常点,确定其重要性和潜在原因。

三、常用的异常检测算法

  1. Z-Score:基于数据点与均值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值