异常检测,也被称为异常发现或离群点检测,是数据挖掘领域中的一个重要分支。它的目标是在数据集中识别出与大多数数据点显著不同的数据点,这些数据点被称为异常点或离群点。异常检测在许多领域都有应用,包括金融欺诈检测、网络安全、系统健康监测、信用卡欺诈检测、医疗诊断、机器故障预测等。
一、异常检测的类型
- 统计学基础方法:依赖于数据遵循特定统计分布的假设,异常点通常位于分布的极端尾端。
- 邻域亲近度法:通过衡量数据点间距离或相似性来判断异常,若某点与其邻近数据显著不同,则视为异常。
- 聚类分析法:通过聚类将数据分组,未被有效聚类包容的孤立点被视为异常。
- 分类模型法:采用机器学习分类器,直接对数据点进行正常或异常的标签分配。
- 重构误差法:通过数据重建技术评估原始数据与重构数据间的差异,误差显著者视为异常。
二、异常检测的步骤
- 数据收集:收集需要进行异常检测的数据。
- 数据预处理:包括数据清洗、标准化、归一化等。
- 特征选择:选择有助于异常检测的特征。
- 模型训练:使用适当的算法训练模型。
- 异常检测:应用模型来识别异常点。
- 结果分析:分析检测到的异常点,确定其重要性和潜在原因。
三、常用的异常检测算法
- Z-Score:基于数据点与均值