因子分析是一种统计方法,用于发现数据集中的潜在结构。它通过识别变量之间的相关性模式,将多个变量简化为一组较少的不可观测的变量,称为因子。这些因子代表了原始变量的潜在关联,有助于解释数据中的变异性。
一、核心内容
- 目的:因子分析的核心目标在于,通过减少数据冗余,阐释变量间潜在的相关性和结构,促进数据解释的深度和效率。
- 适用场景:该技术特别适用于数据集合中变量繁多且相互关联的情景,如心理学量表、市场调研问卷等,以提炼核心影响维度。
- 步骤:
- 数据准备:确保数据质量,处理缺失值和异常值。
- 相关性分析:计算变量之间的相关系数矩阵。
- 提取因子:使用主成分分析(PCA)或其他方法提取初始因子。
- 旋转因子:通过旋转技术(如直交旋转或斜交旋转)改善因子的可解释性。
- 因子得分估计:为每个观测值计算因子得分,反映其在每个因子上的位置。
- 因子提取方法:包括主成分分析(PCA)、主轴因子法(PAF)、最大似然法(ML)等。
- 因子旋转:为了提高因子的可解释性,可以对提取的因子进行旋转。
- 结果解释:分析因子矩阵,确定哪些变量对每个因子的贡献最大。
- 应用领域:广泛应用于心理学、教育学、市场研究