正交偏最小二乘判别分析(Orthogonal Partial Least Squares Discriminant Analysis, OPLS-DA)

在这里插入图片描述
正交偏最小二乘判别分析(Orthogonal Partial Least Squares Discriminant Analysis, OPLS-DA)是一种多变量统计分析方法,主要用于分类和特征选择,尤其在代谢组学和组学数据分析中非常有用。OPLS-DA结合了偏最小二乘回归(PLSR)和正交信号校正(OSC)两种技术,旨在区分不同组别的样本,并识别影响组别分类的关键变量。

一、OPLS-DA原理

  1. 数据分解:OPLS-DA将X矩阵(样本的预测变量矩阵)分解为两个部分:与响应变量Y相关的预测主成分(Predictive Components)和与Y无关的正交主成分(Orthogonal Components)。
  2. 预测主成分:与Y变量相关的变量信息,用于预测和解释组间差异。
  3. 正交主成分:与Y变量不相关的变量信息,用于解释组内差异,同时排除与组别无关的变量影响。
  4. 特征选择:通过OPLS-DA分析,可以为每个变量计算一个变量重要性投影(Variable Importance in Projection, VIP)值,VIP值越大,表示该变量对区分组别贡献越大。

二、应用场景

正交偏最小二乘判别分析(OPLS-DA)的应用场景非常广泛,以下是一些主要的应用领域:

  1. 代谢组学研究:OPLS-DA在代谢组学中用于分析生物样本(如血液、尿液、组织等)的代谢物组成,以识别不同生物学状态(如健康与疾病)之间的差异代谢物。
  2. 疾病诊断与分类:通过分析病人样本的代谢组数据,OPLS-DA有助于诊断疾病并区分不同疾病状态,从而有助于临床决策和治疗。
  3. 药物研发:在药物发现和开发过程中,OPLS-DA可以用来筛选药物作用的生物标志物,评估药物效果及副作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值