正交偏最小二乘判别分析(Orthogonal Partial Least Squares Discriminant Analysis, OPLS-DA)是一种多变量统计分析方法,主要用于分类和特征选择,尤其在代谢组学和组学数据分析中非常有用。OPLS-DA结合了偏最小二乘回归(PLSR)和正交信号校正(OSC)两种技术,旨在区分不同组别的样本,并识别影响组别分类的关键变量。
一、OPLS-DA原理
- 数据分解:OPLS-DA将X矩阵(样本的预测变量矩阵)分解为两个部分:与响应变量Y相关的预测主成分(Predictive Components)和与Y无关的正交主成分(Orthogonal Components)。
- 预测主成分:与Y变量相关的变量信息,用于预测和解释组间差异。
- 正交主成分:与Y变量不相关的变量信息,用于解释组内差异,同时排除与组别无关的变量影响。
- 特征选择:通过OPLS-DA分析,可以为每个变量计算一个变量重要性投影(Variable Importance in Projection, VIP)值,VIP值越大,表示该变量对区分组别贡献越大。
二、应用场景
正交偏最小二乘判别分析(OPLS-DA)的应用场景非常广泛,以下是一些主要的应用领域:</