加权回归分析(Weighted Regression Analysis)是一种统计方法,用于处理数据集中各观测值的权重不同的情况。在标准的线性回归分析中,所有的观测值都被假定为具有相同的权重,即每个数据点对模型的影响是相等的。然而,在实际应用中,某些数据点可能比其他数据点更重要或者更可靠,因此需要对这些数据点赋予更大的权重。
一、基本概念
加权回归分析特别适用于数据集中存在异方差性(heteroscedasticity)的情况,即方差随着自变量的不同而变化。
- 权重(Weights):在加权回归中,每个观测值都有一个与之相关的权重,这些权重用于调整观测值在回归分析中的重要性。权重可以基于先验知识、数据的质量、样本大小或其他标准来确定。
- 异方差性(Heteroscedasticity):在标准线性回归中,假设所有观测值的方差是恒定的(同方差性)。然而,在实际应用中,这种假设往往不成立,数据点的方差可能会随着自变量的变化而变化。加权回归分析可以处理这种情况。
- 加权最小二乘法(Weighted Least Squares, WLS):这是加权回归分析中最常用的方法。它通过最小化加权残差的平方和来估计回归系数。权重用于调整残差的大小,使得具有较大方差的观测值对总体模型的影响减小。
- 权重矩阵(Weight Matrix):在某些类型的加权回归中ÿ