t检验是一种统计检验方法,用于比较两组数据的均值是否存在显著差异。它广泛应用于社会科学、生物科学、医学研究等领域。
一、基本概念
t检验是一种基于t分布的统计检验方法,用于确定两个样本均值之间是否存在显著差异。以下是t检验的一些基本概念:
6.显著性水平(Significance Level, α):
显著性水平是用于判断统计结果是否显著的阈值,常用的显著性水平有0.05、0.01等。
7. p值(p-value):
- p值是观察到当前统计量或更极端情况发生的概率,如果p值小于显著性水平,则拒绝零假设。
- 效应量(Effect Size):
- 效应量是衡量两个样本均值差异的实际重要性的指标,常用的效应量指标有Cohen’s d。
- 同方差假设(Homoscedasticity):
- 在独立样本t检验中,假设两个样本具有相同的方差。
- 非正态分布数据:
- 如果数据不满足正态分布,可能需要使用非参数检验方法,如曼-惠特尼U检验或威尔科克森符号秩检验。