t检验统计方法

在这里插入图片描述
t检验是一种统计检验方法,用于比较两组数据的均值是否存在显著差异。它广泛应用于社会科学、生物科学、医学研究等领域。

一、基本概念

t检验是一种基于t分布的统计检验方法,用于确定两个样本均值之间是否存在显著差异。以下是t检验的一些基本概念:
在这里插入图片描述
6.显著性水平(Significance Level, α):
显著性水平是用于判断统计结果是否显著的阈值,常用的显著性水平有0.05、0.01等。
7. p值(p-value):

  • p值是观察到当前统计量或更极端情况发生的概率,如果p值小于显著性水平,则拒绝零假设。
  1. 效应量(Effect Size):
    • 效应量是衡量两个样本均值差异的实际重要性的指标,常用的效应量指标有Cohen’s d。
  2. 同方差假设(Homoscedasticity):
    • 在独立样本t检验中,假设两个样本具有相同的方差。
  3. 非正态分布数据:
    • 如果数据不满足正态分布,可能需要使用非参数检验方法,如曼-惠特尼U检验或威尔科克森符号秩检验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值