结构方程模型(Structural Equation Modeling,SEM)是一种多变量统计分析技术,用于分析变量之间的复杂关系。它结合了因子分析和多变量回归分析,允许研究者同时考察多个因果关系。
一、基本概念
- 测量模型(Measurement Model):测量模型关注的是观测变量(可以直接测量的数据)和潜在变量(不能直接测量的抽象概念)之间的关系。它通常使用因子分析来识别观测变量背后的潜在因子。
- 结构模型(Structural Model):结构模型关注的是潜在变量之间的关系。它可以是线性的或非线性的,允许研究者测试假设的因果关系。
- 潜在变量(Latent Variables):潜在变量是那些不能直接观察到的抽象概念或构造,例如情绪、态度或能力。它们通过观测变量来间接测量。
- 观测变量(Observed Variables):观测变量是可以直接测量的数据,例如问卷调查中的得分或实验中收集的数值。
- 路径分析(Path Analysis):路径分析是一种统计方法,用于探究变量之间的因果关系。在SEM中,路径分析帮助研究者理解变量如何相互影响。
- 验证性因子分析(Confirmatory Factor Analysis, CFA):CFA是SEM的一部分,用于测试特定因子结构的假设,即观测变量和潜在变