敏感性分析(Sensitivity Analysis)的基本原理是通过评估输入变量的变化对输出结果的影响,来确定哪些输入变量对模型或决策过程最为关键。
一、核心原理
- 影响度量:首先定义一个度量标准来衡量输入变量变化对输出的影响。这可以是输出的变化量、变化百分比、或者更复杂的统计量。
- 参数变化:系统地改变输入参数的值,通常在它们可能的取值范围内进行。这可以是按照一定的步长变化,或者通过随机抽样来实现。
- 模型响应:对于每一个输入参数的变化,观察并记录模型的输出结果。这通常涉及到多次模型运行或模拟。
- 敏感度计算:计算每个输入参数变化对输出结果的影响度量。这可以是简单的差分(如增量比),或者更复杂的统计方法(如方差分析)。
- 局部与全局分析:
- 局部敏感性分析:关注在特定点或小范围内输入参数的变化对输出的影响,通常通过求导数来实现。
- 全局敏感性分析:考虑整个参数空间内的变化,评估输入参数在整个范围内对输出的总体影响。
- 统计方法:使用统计方法来量化输入参数对输出方差的贡献,如方差基分析(Sobol’ method)。
- 交互作用识别:识别输入参数之间的交互作用,即两个或多个参数共同作用对输出的影响。
- 稳健性评估:评估模型对输入参数变化的抵抗能力,即模型的稳健性。
- 不确定性传播: