混合整数规划(Mixed Integer Programming, MIP)是一种优化问题,它结合了线性规划和整数规划的特点。在混合整数规划问题中,一部分决策变量是连续的(可以取任何实数值),而另一部分决策变量是离散的(只能取整数值)。
一、基本概念
整数变量:模型中包含一些变量被限定必须取整数值,比如只能是 0 或 1,或者是正整数等。
连续变量:同时也可能有一些变量可以在一定范围内取连续的值。
目标函数:通常是要优化的一个表达式,比如最大化利润或最小化成本等。
约束条件:对变量取值的限制条件,这些条件可以是线性的或非线性的。
例如,在一个生产计划问题中,可能决定是否开启某条生产线(用 0 或 1 表示,这就是整数变量),同时还有关于生产数量等连续变量,目标是在满足各种资源约束的情况下最大化利润。
例如,在选址问题中,要决定在某些地点建立设施(整数决策),同时考虑成本和服务覆盖等因素(目标函数和约束条件);或者在排班问题中,确定员工的排班情况(整数决策),以满足工作需求和劳动力限制等(约束条件)。
二、过程
混合整数规划求解过程通常包括以下几个关键步骤:
- 问题建模