断点回归设计(Regression Discontinuity Design,RDD)是一种准实验设计方法,常用于因果推断研究中。它基于一个关键的假设:在某个临界点(断点)附近,个体或单位的某些特征会突然改变,而这种改变是随机的或几乎随机的。通过比较断点两侧的结果变量,研究者可以估计出断点处的干预效果。
一、基本原理
- 断点:确定一个临界值,超过这个临界值的个体或单位会接受某种干预或待遇。
- 随机性:在断点附近,个体是否接受干预是随机的或几乎随机的,这通常由一些客观标准决定,比如考试成绩、年龄等。
- 局部性:RDD关注的是断点附近的局部效应,而不是整体效应。
二、应用场景
教育研究:比如,根据考试成绩决定是否进入某个特殊教育项目。
- 医疗研究:根据某个阈值决定是否给予患者某种治疗。
- 政策评估:根据收入水平决定是否提供某种补贴或福利。
三、实施步骤
- 确定断点:明确干预的临界值。
- 收集数据:收集断点两侧的数据,包括接受和未接受干预的个体。
- 估计效应:使用统计方法估计干预的效应,通常包括:
- 简单的比较:比较断点两侧的平均值差异。
- 回归分析: