自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)。是一种广泛应用于时间序列分析的统计模型。ARIMA模型结合了自回归(AR)、差分(I)和移动平均(MA)三种方法,能够对非平稳时间序列数据进行建模和预测。
一、组成部分
- 自回归(AR):模型考虑了时间序列过去值的信息,即当前值与之前值之间存在某种线性关系。
- 差分(I):对时间序列进行差分,以消除非平稳性。差分的阶数d决定了需要进行多少次差分操作,直到时间序列变得平稳。
- 移动平均(MA):模型考虑了时间序列的随机误差项,即当前值与过去误差项之间存在某种线性关系。
二、表示方法
ARIMA模型通常用三个参数(p, d, q)来表示,其中:
- p 是自回归项的阶数,表示当前值与多少个过去值有关。
- d 是差分的阶数,表示需要进行多少次差分操作。
- q 是移动平均项的阶数,表示当前值与多少个过去的误差项有关。
三、建模步骤
- 确定阶数(p, d, q):通过观察时间序列的自相关函数(ACF)和偏自