自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)

在这里插入图片描述
自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)。是一种广泛应用于时间序列分析的统计模型。ARIMA模型结合了自回归(AR)、差分(I)和移动平均(MA)三种方法,能够对非平稳时间序列数据进行建模和预测。

一、组成部分

  1. 自回归(AR):模型考虑了时间序列过去值的信息,即当前值与之前值之间存在某种线性关系。
  2. 差分(I):对时间序列进行差分,以消除非平稳性。差分的阶数d决定了需要进行多少次差分操作,直到时间序列变得平稳。
  3. 移动平均(MA):模型考虑了时间序列的随机误差项,即当前值与过去误差项之间存在某种线性关系。

二、表示方法

ARIMA模型通常用三个参数(p, d, q)来表示,其中:

  • p 是自回归项的阶数,表示当前值与多少个过去值有关。
  • d 是差分的阶数,表示需要进行多少次差分操作。
  • q 是移动平均项的阶数,表示当前值与多少个过去的误差项有关。

三、建模步骤

  1. 确定阶数(p, d, q):通过观察时间序列的自相关函数(ACF)和偏自
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值